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Abstract
● AIM: To develop different machine learning models to 
train and test diplopia images and data generated by the 
computerized diplopia test. 
● METHODS: Diplopia images and data generated by 
computerized diplopia tests, along with patient medical 
records, were retrospectively collected from 3244 cases. 
Diagnostic models were constructed using logistic 
regression (LR), decision tree (DT), support vector machine 
(SVM), extreme gradient boosting (XGBoost), and deep 
learning (DL) algorithms. A total of 2757 diplopia images 
were randomly selected as training data, while the test 
dataset contained 487 diplopia images. The optimal 
diagnostic model was evaluated using test set accuracy, 
confusion matrix, and precision-recall curve (P-R curve).
● RESULTS: The test set accuracy of the LR, SVM, 
DT, XGBoost, DL (64 categories), and DL (6 binary 
classifications) algorithms was 0.762, 0.811, 0.818, 
0.812, 0.858 and 0.858, respectively. The accuracy in 
the training set was 0.785, 0.815, 0.998, 0.965, 0.968, 
and 0.967, respectively. The weighted precision of LR, 
SVM, DT, XGBoost, DL (64 categories), and DL (6 binary 
classifications) algorithms was 0.74, 0.77, 0.83, 0.80, 0.85, 
and 0.85, respectively; weighted recall was 0.76, 0.81, 0.82, 
0.81, 0.86, and 0.86, respectively; weighted F1 score was 
0.74, 0.79, 0.82, 0.80, 0.85, and 0.85, respectively.
● CONCLUSION: In this study, the 7 machine learning 
algorithms all achieve automatic diagnosis of extraocular 
muscle palsy. The DL (64 categories) and DL (6 binary 
classifications) algorithms have a significant advantage over 
other machine learning algorithms regarding diagnostic 
accuracy on the test set, with a high level of consistency 

with clinical diagnoses made by physicians. Therefore, it can 
be used as a reference for diagnosis.
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INTRODUCTION

E xtraocular muscle palsy is caused by vascular diseases, 
cranial nerve injuries, infections, and other factors 

affecting the ocular motor nerve system or extraocular muscles 
themselves, resulting in complete or partial dysfunction of 
≥1 extraocular muscle. This can lead to diplopia, restricted 
eye movement, and strabismus[1-3]. Hess screen test is a 
common clinical examination method used to distinguish 
and diagnose extraocular muscle palsy by breaking binocular 
visual fusion[4-5]. The computerized diplopia test, a computer-
automated detection device based on the traditional Hess 
screen principle, showed accurate and reliable results in the 
clinic[6-7]. The diplopia image is the plot generated by the 
computerized diplopia test, reflecting the image perceived 
by the patient during the gaze test[6] (Figure 1). However, 
the shapes of diplopia images can be complex and vary 
depending on which extraocular muscles are paralyzed. 
Therefore, a professionally trained doctor need to manually 
interpret diplopia images to diagnose the paralyzed extraocular 
muscles. However, this requirement for specialized expertise 
and manual interpretation is not conducive to the widespread 
adoption of this method in clinical practice.
In recent years, artificial intelligence has been widely used in 
ophthalmic diagnosis[8-9]. Deep learning (DL) models achieved 
automatic diagnosis of diseases such as glaucoma[10-11], 
cataracts[12], strabismus[13-14], ptosis[15], and acanthamoeba 
keratitis[16], including automatic classification of glaucoma 
severity[11].
A previous study[17] utilized a support vector machine (SVM) 
to construct a model for diagnosing specific extraocular muscle 
palsy. A total of 229 patients underwent testing and diagnosis 
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through this system, with 156 patients achieving consistency 
between the diagnostic results based on the SVM and clinical 
diagnoses established by physicians, resulting in an accuracy 
rate of 68.12%. However, that study had a small sample size 
and could only predict single extraocular muscle palsy with 
the highest probability and a relatively low accuracy rate. 
Currently, we have established a large sample diplopia image 
database, which provides a data basis for machine learning, 
after accumulating clinical information about extraocular 
muscle palsy patients for a long time. These factors have led 
us to consider whether we can use the existing large amount of 
data to train machine learning models to establish the accurate, 
efficient, and simple-to-operate computer-aided diagnosis of 
paralyzed extraocular muscles.
This study designed, developed, and evaluated multiple 
machine learning algorithms for diagnosing extraocular muscle 
paralysis using digital electronic strabismus detection. Through 
this method design, all algorithms could simultaneously predict 
multiple paralyzed muscles at once. Then, the most suitable 
machine learning algorithm model was selected for application 
in clinical diagnosis.
PARTICIPANTS AND METHODS
Ethical Approval  This study was approved by the Ethics 
Committee of the First Affiliated Hospital of Harbin Medical 
University (No.2024JS97) and followed the principles outlined 
in the Declaration of Helsinki.
Data Collection  Diplopia images and data generated by 
computerized diplopia tests, along with patient medical records, 
were retrospectively collected from 3244 cases. The inclusion 
criteria for patients in this study were 1) patients diagnosed 
with extraocular muscle palsy; 2) healthy volunteers; and 3) 
those who have completed binocular diplopia imaging tests 
and have complete images. The exclusion criteria comprised 
patients with restrictive strabismus (including cases of orbital 
wall fractures, hematomas, or thyroid-related orbitopathy), 
glaucoma, color blindness, high myopia, or diplopia occurring 
during monocular fixation.
Data Preprocessing  Recoding and preprocessing of variable 
data were performed since these are an important step in 
machine learning model training. Assigning values to data 
sequentially allows the model to train more easily, significantly 
reducing the runtime of machine learning and improving the 
efficiency of model evaluation.
Processing of raw diplopia image data  Taking the right-
eye image of the original strabismus image (Figure 1) as an 
example, a coordinate system was established with the central 
red dot as the origin, the horizontal direction as the X-axis, and 
the vertical direction as the Y-axis. Based on the strabismus 
image detection standard test angle of 20°[6] and the deviation 

angle in the table, the coordinates of the 9 red and 9 blue dots 
corresponding to the left upper, upper, right upper, left, straight 
ahead, right, left lower, lower, and right lower positions could 
be obtained (Figure 2).
Strabismus image diagnosis results and processing  
Two physicians with at least 5y of professional experience 
performed diagnosis and annotation of the diplopia images in a 
double-blind manner. If their diagnostic results were consistent, 
they were considered the standard result. If their diagnostic 
results were inconsistent, a third, more senior expert would 
diagnose the inconsistent diplopia images. All experimental 
data were anonymized before the study. After diagnosis and 
verification by three professional doctors, normal extraocular 
muscles (including synergistic muscles with overaction and 
competitor muscles with underaction) were labeled as “0”, 
while abnormal extraocular muscles (including partially or 

Figure 1 Diplopia image  A: Right-eye figure; B: Left-eye figure; C: The 

horizontal and vertical deviation angles of both eyes at 9 gaze points.

Figure 2 Processing of strabismus image data  A: Based on 

the strabismus image detection standard test angle of 20°, the 

coordinates of the 9 red dots corresponding to the left upper, 

upper, right upper, left, straight ahead, right, left lower, lower, and 

right lower positions are (-20, 20), (0, 20), (20, 20), (-20, 0), (0, 0), 

(20, 0), (-20, -20), (0, -20), and (20, -20), respectively; B: Based on 

the deviation angle in the table, the coordinates of the 9 blue dots 

corresponding to the left upper, upper, right upper, left, straight 

ahead, right, left lower, lower, and right lower positions are (-21, 20), 

(-2, 18), (19, 18), (-23, -4), (-2, -5), (17, -6), (-24, -24), (-4, -27), and 

(14, -28), respectively.

Automatic diagnosis of extraocular muscle palsy
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completely paralyzed extraocular muscles) were labeled as “1”. 
Using Figure 1 as an example, the diagnostic result was right 
superior oblique muscle paresis, which could be marked as 
shown in Table 1. Following this method, all diplopia images 
meeting the inclusion criteria would be processed sequentially 
for both eyes, and the data would be entered into an Excel 
spreadsheet to create a database.
When using machine learning to model and analyze eye 
muscle palsy, we encountered a problem: previous research 
could only determine which muscle was more likely to be 
damaged but could not simultaneously judge the palsy of 
multiple eye muscle. Although DL algorithms can solve the 
problem of simultaneously predicting 6 muscles by designing a 
fully connected layer output, followed by a rectified linear unit 
activation function, and using a loss function that can handle 
binary cross-entropy, such as binary cross-entropy with logits 
loss, other machine learning algorithms cannot be directly 
applied. To solve this problem, we arranged the output results 
of the labels according to the order of superior rectus, inferior 
rectus, medial rectus, inferior oblique, superior oblique, and 
lateral rectus. Furthermore, the output result was represented as 
a binary code, such as 000010 (Table 1). This binary code can 
be interpreted as paralysis of the superior oblique muscle and 
can be translated into decimal form as 2. By using the numbers 
0–63, it is possible to uniquely represent which eye muscles 
are paralyzed. The model only needs to perform 64-class 
classification on the input data. This method is also applicable 
to other machine learning classification models.
The coordinate values of the 9 standardized blue points from 
all included diplopia images are used as input data for the 
machine learning model, with the corresponding diagnostic 
results serving as the output labels. The model extracts feature 
patterns from the input data to establish the relationship 
between the input data and the labels. After training, the model 
can generate predicted labels based on the input data from the 
test set.
Data Set Partitioning  The data set of strabismus images for 
each diagnostic type was randomly divided into training and 
testing sets in an 85:15 ratio. The training data set was used 
to train the models, whereas the testing data set was used to 
evaluate the performance of the models.
Machine Learning and Algorithm Application  Logistic 
regression (LR), also known as logistic odds regression, is a 
generalized linear regression analysis model commonly used 
for binary classification. It can be used for multi-classification 

by replacing the nonlinear mapping function

                              

with the

                              

function. This study used Python (3.10.8) as the programming 
language, applying data processing libraries, such as Numpy 
(1.22.3) and Panda (1.3.5), to preprocess the coordinate data 
of 9 points. Additional, the labels were processed into decimal 
numbers ranging from 0 to 63. The LR function of scikit-
learn (1.2.1) was used to perform LR, and the Newton method 
iterative algorithm was applied for training. Then, the trained 
model was used to diagnose and test the test data. Figure 3A 
shows the detailed processing flow in the pseudocode. Decision 
trees (DT), SVM, extreme gradient boosting (XGBoost) and 
other traditional machine learning algorithms were applied 
as described above, with corresponding modifications made 
to data processing and algorithm function implementation 
(Figure 3B).
In DL applications, the PyTorch (1.13.1) DL training 
framework was used. A fully connected neural network with 
3 hidden layers was constructed based on the input data of 9 
points (18 dimensions), with a 64-class classifier and 6 binary 
classifiers (Figure 4A) in the prediction head. The batch size 
for each training session was 128, and the SGD optimizer 
was used for gradient optimization. Furthermore, the 9-point 
coordinates were formed into images similar to those in 
Figure 2B, and convolutional neural networks were used 
to classify the generated images (Figure 4B). The above-
mentioned algorithms were trained on a system with an Intel 
Xeon 8-core processor, a Tesla T4 GPU, and 64GB of memory 
running the Ubuntu 18.04 operating system.
Model Evaluation  The classification performance of different 
models on the test set was evaluated by calculating accuracy, 
weighted precision, weighted recall, and weighted F1-score, as 
well as by plotting the confusion matrix and the P-R curve.
RESULTS
Data Collection and Artificial Diagnosis Results of Fundus 
Images  A total of 3244 data entries were included in this 
study, encompassing 16 types of manually annotated results. 
Table 2 shows the baseline characteristics of patients in 
the training and test sets. Mean age, gender, or diagnostic 
distribution showed no significant differences between the two 
groups.

Table 1 Processing of diagnosis results

Name Superior rectus Inferior rectus Medial rectus Inferior oblique Superior oblique Lateral rectus
Patient 1 0 0 0 0 1 0

0: Normal; 1: Abnormal.
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Model Evaluation Results  Table 3 demonstrates the 
accuracies of training and test sets for each machine learning 
model. The LR model demonstrated relatively low accuracy 
on both training and test sets. The DT and XGBoost models 
exhibited high accuracy on the training set but performed 
poorly on the test set, indicating significant overfitting. The 
DL models for 64-class classification and binary classification 
achieved high accuracy on both training and test sets, with 
minimal differences in the diagnostic performance between the 
two. Additionally, the convolutional neural network (CNN) model 
showed very low accuracy on both datasets, probably due to the 
difficulty in learning effective diagnostic rules from image point 
information compared to explicit coordinate point information.
A confusion matrix is a standard format for evaluating 
the accuracy of a model. Accordingly, Figure 5 shows the 
confusion matrices of 6 machine learning models on the test 
set. According to the method of diagnosing multiple eye 

extrinsic muscle disorders simultaneously, the labels of 974 
test set samples contained 14 categories. Different machine 
learning models output different numbers of categories; hence, 
the number of categories in the confusion matrices of different 
machine learning algorithms was not consistent.
Weighted precision, weighted recall, and weighted F1 score are 
indicators evaluating the quality of a machine learning model. 
Table 4 shows the average precision (AP), recall, and F1 scores 
of the 6 machine learning models on the test set, with the DL-
based algorithm having the optimal technical indicators.
Based on the confusion matrices of the test set for each model, 
we could calculate the precision and recall and plot the P-R 
curve (Figure 6). The area under the P-R curve is called AP. 
Generally, the better the classifier, the higher the value of the 
AP. According to the diagnostic accuracy of the test set and the 
AP value in the P-R curve, the DL-based model (64 categories) 
had the best diagnostic effect.

Figure 4 Structure diagram of fully connected and convolutional neural networks  A: Fully connected neural network, with input as 9-point 

coordinates and output as 6 binary classifiers; B: Convolutional neural network, with input as a 224×224 image and output as 6 binary 

classifiers.

Figure 3 Processing flow  A: Pseudocode for logistic regression; B: Pseudocode for decision tree, support vector machine and extreme gradient 

boosting algorithms.

Automatic diagnosis of extraocular muscle palsy
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DISCUSSION
This study collected and organized data on diplopia images, 

deviation angle, and corresponding manual diagnosis. Different 
machine learning algorithm types were applied to analyze the 
data, achieving simultaneous diagnosis of multiple paralyzed 
eye muscles. Comparing the performance of these different 
algorithms on training and testing sets, we found that the DL 
algorithm based on a full CNN (including 64-class and 6-class 
binary classification) had the best performance and achieved 
high accuracy (with a testing set accuracy of 0.858 for both). 
Confusion matrices and P-R curves indicated that the DL 
diagnostic model had the best stability and consistency in 
diagnosing eye muscle paralysis.
Artificial intelligence, particularly algorithms represented 
by CNNs in target detection[18], image segmentation[19], 
and facial recognition[20], has been applied in the diagnosis 
of extraocular muscle-related diseases. Some studies used 
CNNs to segment extraocular muscles and measure muscle 

Table 3 Accuracy of different models

Algorithm types Training parameters Training set accuracy Test set accuracy

LR max_iter=1000 0.785 0.762
SVM - 0.815 0.811
DT - 0.998a 0.818
XGBoost - 0.965 0.812
DL (64 categories) epoch=1000 0.968 0.858b

DL (6 binary classifications) epoch=1000 0.967 0.858b

DL (CNN) epoch=1000 0.590 0.588
aOptimal metric of training set; bOptimal metric of test set. LR: Logistic regression; SVM: Support vector machine; DT: Decision 

tree; XGBoost: Extreme gradient boosting; DL: Deep learning; CNN: Convolutional neural network.

Table 4 Average precision, recall, and F1 scores of different models 

on the test set

Model
Weighted average

Precision Recall F1 scores
LR 0.74 0.76 0.74
SVM 0.77 0.81 0.79
DT 0.83 0.82 0.82
XGBoost 0.80 0.81 0.80
DL (64 categories) 0.85a 0.86b 0.85c

DL (6 binary classifications) 0.85a 0.86b 0.85c

aOptimal metric of weighted precision; bOptimal metric of weighted 

recall; cOptimal metric of weighted F1 scores. LR: Logistic regression; 

SVM: Support vector machine; DT: Decision tree; XGBoost: Extreme 

gradient boosting; DL: Deep learning.

Table 2 Statistics and baseline characteristics of patients in training and test sets

Parameters Training set Test set P
Image quantity (pieces) 2757 487 -
Average age, y (mean±SD) 55.39±0.29 55.60±0.57 0.362a

Number of males (%) 61.50 58.10 0.160b

Diagnostic distribution, % (n) 0.018b

Normal 49.24 (2702) 48.46 (472)
Lateral rectus muscle palsy 23.76 (1304) 24.03 (234)
Oculomotor nerve palsy 11.28 (619) 9.14 (89)
Superior oblique muscle palsy 6.43 (353) 9.04 (88)
Inferior rectus muscle palsy 2.75 (151) 1.95 (19)
Superior rectus muscle palsy 2.15 (118) 2.16 (21)
Medial rectus muscle palsy 2.06 (113) 2.46 (24)
Oculomotor nerve and lateral rectus muscle palsy 1.29 (71) 1.64 (16)
Medial rectus and lateral rectus muscle palsy 0.38 (21) 0.41 (4)
Superior rectus and lateral rectus muscle palsy 0.27 (15) 0.31 (3)
Lateral rectus and inferior rectus muscle palsy 0.18 (10) 0.10 (1)
Inferior oblique muscle palsy 0.11 (6) 0
Superior rectus and inferior rectus muscle palsy 0.06 (3) 0.10 (1)
Superior rectus, inferior rectus, and lateral rectus muscle palsy 0.04 (2) 0
Superior oblique and lateral rectus muscle palsy 0 0.10 (1)
Inferior rectus and medial rectus muscle palsy 0 0.10 (1)

aMann-Whitney U test; bChi-square test.
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size from CT images[21]. Another study employed 4 different 
DL frameworks to segment extraocular muscles in magnetic 
resonance images, achieving high accuracy[22]. A research 
team utilized CNN algorithms to automatically locate and 
segment ocular regions to evaluate the extent of inferior 
oblique muscle overaction[23] and measure the range of motion 
of 6 extraocular muscles, demonstrating a high degree of 

consistency with manual measurements[24]. These studies 
still required manual measurements after achieving image 
localization and segmentation, whereas our study achieved 
fully automated diagnosis. One study designed an algorithm 
based on fuzzy logic that automatically diagnoses paralytic 
strabismus using statistical data from Hess charts[4]. However, 
that study only covered 14 disease categories and could only 
identify the extraocular muscle with primary dysfunction. 
In our previous research, we used an SVM algorithm to 
build a diagnostic model for extraocular muscle paralysis[17], 
which similarly could only predict the most likely paralyzed 
extraocular muscle. However, simultaneous paralysis of 
multiple eye muscles is common in clinical diagnosis and 
treatment; thus, achieving simultaneous diagnosis of multiple 
paralyzed eye muscles is key to improving diagnostic accuracy 
and efficiency. In this study, different machine learning 
algorithms were used for 64-class classification, with output 
categories 0-63 corresponding to binary numbers 000000-
111111. Furthermore, a fixed order of 6 eye muscles was used 
to achieve a simultaneous diagnosis of multiple paralyzed eye 
muscles.
We trained and tested the data for each eye separately, rather 
than using binocular data, for two main reasons. First, if we 
had predicted all 12 eye muscles in both eyes simultaneously, 

Figure 5 Confusion matrices  The horizontal axis represents the classification labels predicted by the model, and the vertical axis represents 

the true classification labels. The values in the matrix represent the number of samples in which the model classified a specific true label as a 

certain predicted label, and the values on the diagonal represent the number of correctly classified samples. A: Logistic regression confusion 

matrix; B: Support vector machine confusion matrix; C: Decision tree confusion matrix; D: Extreme gradient boosting confusion matrix; E: Deep 

learning (64 categories) confusion matrix; F: Deep learning (6 binary classifications) confusion matrix.

Figure 6 Precision-recall curve of 5 machine learning algorithms  LR: 

Logistic regression; SVM: Support vector machine; DT: Decision tree; 

XGBoost: Extreme gradient boosting; DL: Deep learning; AP: Average 

precision.

Automatic diagnosis of extraocular muscle palsy
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the model would have required 212=4096 output categories, 
which would be difficult to converge and significantly 
reduce accuracy given the current sample size. Second, we 
preprocessed the deviation angles for the left and right eyes, 
converting them into standard data and eliminating any 
differences, without affecting the final diagnosis.
Compared to previous studies, the machine learning model in 
this experiment achieved automatic diagnosis of extraocular 
muscle paralysis by learning complex patterns that are difficult 
for humans to detect. This reduced human subjectivity-related 
diagnostic errors, improved diagnostic efficiency, and achieved 
a certain level of accuracy. However, some limitations remain. 
First, the diagnostic accuracy of the best-performing DL model 
on the test set was only 85.8% with limited improvement. We 
speculate that errors in the manual diagnosis of strabismus 
images may be a primary reason as these errors could influence 
model optimization during training and decrease accuracy 
due to incorrect labels in the test set. Additionally, the lack of 
sufficient strabismus image data may impact the generalization 
performance of the model. Second, restrictive and paralytic 
cases exhibit the same patterns in diplopia images. However, 
this study focused solely on the diagnosis of paralytic 
extraocular muscles, lacking the capability to diagnose 
restrictive strabismus cases, which needs to be addressed in 
future research. Third, as a retrospective study, this research 
faced limitations such as incomplete patient medical records 
and inconsistencies in the conditions of computerized diplopia 
examinations (e.g., lighting levels, refractive correction, and 
the distance between the patient and the projection screen), 
which may affect the reliability of the study. Moreover, with 
the accumulation of data and optimization of the model, we 
aim to continuously improve the performance of the model, 
provide higher-quality medical services to patients, and bring 
promising prospects for future diagnosis and treatment.
In conclusion, seven machine learning models were designed 
and implemented to enable simultaneous diagnosis of multiple 
paralyzed eye muscles. The DL (64 categories) and DL (6 
binary classifications) algorithms achieved higher accuracy 
on the test set compared to other algorithms and demonstrated 
greater stability.
ACKNOWLEDGEMENTS
Foundations: Supported by National Natural Science 
Foundation of China (No.82074524); Harbin Medical 
University Graduate Research and Practice Innovation Project 
(No.YJSCX2023-50HYD).
Conflicts of Interest: Jin XL, None; Li XM, None; Liu TJ, 
None; Zhou LY, None.
REFERENCES

1 Danieli L, Montali M, Remonda L, et al. Clinically directed 

neuroimaging of ophthalmoplegia. Clin Neuroradiol 2018;28(1):3-16.

2 Weidauer S, Hofmann C, Wagner M, et al. Neuroradiological and 

clinical features in ophthalmoplegia. Neuroradiology 2019;61(4):365-387.

3 Ranjan R, Singh D, Mahesh KV, et al. Infectious ophthalmoplegias. J 

Neurol Sci 2021;427:117504.

4 Yamin A, Khan SA, Yasin UU. Automated system of Hess screen for 

diagnosis of paralytic strabismus using computer aided diagnosis. 2013 

IEEE International Conference on Imaging Systems and Techniques 

(IST). October 22-23, 2013, Beijing, China. IEEE, 2013:300-305.

5 Orduna-Hospital E, Maurain-Orera L, Lopez-de-la-Fuente C, et al. 

Hess Lancaster screen test with eye tracker: an objective method 

for the measurement of binocular gaze direction. Life (Basel) 

2023;13(3):668.

6 Zhou LY, Liu TJ, Li XM, et al. A new interpretation and quantitative 

method for diplopia test: 304 cases of ocular motor nerve palsy for 

clinical test and verify. Int J Ophthalmol 2017;10(11):1768-1770.

7 Zhou LY, Liu TJ, Li XM. Adult reference values of the computerized 

diplopia test. Int J Ophthalmol 2016;9(11):1646-1650.

8 Ting DSW, Lee AY, Wong TY. An ophthalmologist’s guide to 

deciphering studies in artificial intelligence. Ophthalmology 

2019;126(11):1475-1479.

9 Ting DSW, Pasquale LR, Peng L, et al. Artificial intelligence and deep 

learning in ophthalmology. Br J Ophthalmol 2019;103(2):167-175.

10 Xue Y, Zhu J, Huang X, et al. A multi-feature deep learning system 

to enhance glaucoma severity diagnosis with high accuracy and fast 

speed. J Biomed Inform 2022;136:104233.

11 Noury E, Mannil SS, Chang RT, et al. Deep learning for glaucoma 

detection and identification of novel diagnostic areas in diverse real-

world datasets. Transl Vis Sci Technol 2022;11(5):11.

12 Keenan TDL, Chen Q, Agrón E, et al. DeepLensNet: deep learning 

automated diagnosis and quantitative classification of cataract type and 

severity. Ophthalmology 2022;129(5):571-584.

13 Karaaslan Ş, Kobat SG, Gedikpınar M. A new method based on deep 

learning and image processing for detection of strabismus with the 

Hirschberg test. Photodiagnosis Photodyn Ther 2023;44:103805.

14 Zheng C, Yao Q, Lu JW, et al. Detection of referable horizontal 

strabismus in children’s primary gaze photographs using deep learning. 

Transl Vis Sci Technol 2021;10(1):33.

15 Hung JY, Perera C, Chen KW, et al. A deep learning approach to 

identify blepharoptosis by convolutional neural networks. Int J Med 

Inform 2021;148:104402.

16 Lincke A, Roth J, Macedo AF, et al. AI-based decision-support 

system for diagnosing acanthamoeba keratitis using in vivo confocal 

microscopy images. Transl Vis Sci Technol 2023;12(11):29.

17 Guo BT. Diplopia image testing equipment for ophthalmoplegia 

patients and diagnostic decision support system. Harbin Engineering 

University. 2013.

18 Zong ZF, Song GL, Liu Y. DETRs with collaborative hybrid 

assignments training. 2023 IEEE/CVF International Conference on 

Computer Vision (ICCV). October 1-6, 2023, Paris, France. IEEE, 

2023:6725-6735.



764

19 Wang P, Wang SJ, Lin JY, et al. ONE-PEACE: exploring one general 

representation model toward unlimited modalities. 2023:2305.11172. 

https://arxiv.org/abs/2305.11172v1.

20 An X, Deng JK, Guo J, et al. Killing two birds with one stone: 

efficient and robust training of face recognition CNNs by partial 

FC. 2022 IEEE/CVF Conference on Computer Vision and Pattern 

Recognition (CVPR). June 18-24, 2022, New Orleans, LA, USA. 

IEEE, 2022:4032-4041.

21 Shanker RRBJ, Zhang MH, Ginat DT. Semantic segmentation 

of extraocular muscles on computed tomography images using 

convolutional neural networks. Diagnostics (Basel) 2022;12(7):1553.

22 Qureshi A, Lim S, Suh SY, et al. Deep-learning-based segmentation of 

extraocular muscles from magnetic resonance images. Bioengineering 

(Basel) 2023;10(6):699.

23 Lou L, Huang X, Sun Y, et al. Automated photographic analysis of 

inferior oblique overaction based on deep learning. Quant Imaging 

Med Surg 2023;13(1):329-338.

24 Lou L, Sun Y, Huang X, et al. Automated measurement of ocular 

movements using deep learning-based image analysis. Curr Eye Res 

2022;47(9):1346-1353.

Automatic diagnosis of extraocular muscle palsy


