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Abstract
● AIM: To explore the immune cell infiltration and molecular 
mechanisms of retinal ischemia-reperfusion injury (RIRI) to 
identify potential therapeutic targets.
● METHODS: In the bulk RNA-seq analysis, This study 
performed differential gene expression analysis, weighted 
gene co-expression network analysis, and protein-protein 
interaction network analysis to identify hub genes. 
QuanTIseq was used to determine the composition of 
infiltrating immune cells. Following the identification of 
hub genes, single-cell RNA-seq analysis was employed to 
pinpoint the specific immune cell types expressing these 
hub genes. Cell-cell communication analysis to explore 
signaling pathways and interactions between immune cells 
was further performed. Finally, the expression of these 
key immune regulators in vivo using quantitative real-time 
polymerase chain reaction (qRT-PCR) was validated.
● RESULTS: Bulk RNA-seq analysis identified Stat2, 
Irf7, Irgm1, Igtp, Parp9, Irgm2, Nlrc5, and Tap1 as hub 
genes, with strong correlations to immune cell infiltration. 
Single-cell RNA-seq analysis further revealed six immune 
cell clusters, showing Irf7 predominantly in microglia and 
Tap1 in dendritic cells (DCs). And cell-cell communication 
analysis showed that microglia and DCs play central roles 
in coordinating immune activity. qRT-PCR validated the 
upregulation of these genes.

● CONCLUSION: In the acute phase of RIRI, Irf7 and 
Tap1 may be the potential therapeutic targets to reduce 
inflammation and promote neurological function recovery.
● KEYWORDS: retinal ischemia-reperfusion injury; 
immune cell infiltration; RNA sequencing; single-cell RNA 
sequencing; key immune regulators
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INTRODUCTION

R etinal ischemia-reperfusion injury (RIRI) is a 
multifaceted and complex pathophysiological event 

characterized by a series of destructive processes triggered 
by the temporary loss and restoration of blood flow to 
the retina[1-3]. This injury results in severe retinal damage, 
particularly to retinal ganglion cells, and is associated with a 
variety of ischemic retinal diseases such as glaucoma, retinal 
artery occlusion, and diabetic retinopathy[4-5].
The pathogenesis of RIRI involves multiple damaging 
mechanisms, including oxidative stress,  glutamate 
excitotoxicity, mitochondrial dysfunction, and inflammation[6-8]. 
The ischemic phase leads to cell death primarily through 
necrosis, while the reperfusion phase triggers a cascade of 
inflammatory events, exacerbating the initial damage[9-10]. The 
treatment of RIRI faces great challenges due to the complexity 
of the inflammation and immune responses.
In recent years, advances in high-throughput sequencing and 
bioinformatics have provided a large number of clues and 
evidence for the basic research of clinical diseases. Bulk RNA-
seq is inexpensive and suitable for large-scale gene expression 
profiling, but it lacks cell type-specific resolution[11]. Single-
cell RNA sequencing (scRNA-seq) can provide higher 
resolution to reveal gene expression heterogeneity, cell type 
discrimination and cell state study at the single cell level, but 
it also has limitations such as high cost, technology noisy 
and low sequencing depth[12-13]. There is a great need for 
effective integration and analysis of these data to discover 
key immune regulators and distinguish the heterogeneity of 
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immune cells. As such, a deeper understanding of the immune 
microenvironment after RIRI may be helpful for establishing 
the optimal new treatment strategy of various ischemic retinal 
diseases.
In this study we aimed to identify key immune regulators 
and for the acute phase of RIRI through bioinformatics. 
We extracted two datasets, bulk RNA-seq and scRNA-seq, 
from publicly available databases. First, for bulk RNA-seq 
data, we used weighted gene co-expression network analysis 
(WGCNA) and differentially gene expression screening to 
identify differentially co-expressed genes, evaluated immune 
cell infiltration using a deconvolution algorithm, and calculated 
the association between immune cell infiltration and hub 
genes. In addition, the scRNA-seq data further revealed the 
expression pattern of hub genes in each cell cluster. Finally, we 
successfully validated the expression of key immune regulators 
in mice. 
MATERIALS AND METHODS
Ethics Approval  The experiments of animals in this study 
were approved by the Ethics Committee of Capital Medical 
University (Approval number: AEEI-2024-232). All animal 
experiments were approved by the Intramural Animal Use and 
Care Committee of the Capital Medical University and were 
conducted in accordance with institutional guidelines.
Animal Model  Adult male C57BL/6 mice (6-8wk, 18-20 g) 
were obtained from Vital River Laboratory Animal Technology 
Co. Ltd (Beijing, China).
We randomly divided the animals into two groups: 1) the 
ischemia-reperfusion (IR) group (RIRI model); 2) the control 
group (sham operation). The RIRI model was created as 
previously described[14]. In brief, a 30-gauge needle filled with 
balanced salt solution was inserted into the anterior chamber to 
maintain intraocular pressure (IOP) at 70 mm Hg. In the sham 
operation, which served as the control, the same procedure was 
performed without raising the IOP. After 60min, the needle 
was carefully removed, allowing the IOP to return to normal.
Data Acquisition and Preprocessing  The bulk RNA-Seq 
expression data of 16 samples, include 8 control samples 
and 8 IR samples (PRJNA859197). We first employed 
FastQC (version 0.12.1)[15] to perform quality control on the 
raw sequence data and aggregate the results using MultiQC 
(version 1.15)[16]. Next, we preprocessed the data with fastp 
(version 0.23.4) to trim low-quality bases and adapters[17]. We 
then aligned the cleaned reads to the reference genome by 
HISAT2 (version 2.2.1)[18], specifying strand-specific RNA-
seq data. After alignment, we sorted and indexed the alignment 
files making use of samtools (version 1.17)[19]. Finally, 
we quantified gene expression levels using featureCounts 
(version 2.0.6) for paired-end, strand-specific data, and exon-
based counting[20]. The mouse GRCm39 gene set (https://

wwwEnsembl.org/), as the reference genome, was utilized to 
convert gene IDs to gene symbols in a matrix profile. 
Identification of Differentially Expressed Genes and 
Functional Enrichment Analysis  The differentially 
expressed genes (DEGs) between IR group and control group 
were analyzed using DESeq2 (v1.42.0)[21]. A multitude of 
separate statistical tests for hypotheses were carried out on 
DEGs. Subsequently, a P-value was derived and adjusted using 
the FDR technique. The adjusted P-value was determined by 
applying the BH method for correction. To categorize DEGs 
of significant importance, the criteria include |log2FC|≥2 (FC: 
the fold change of expressions) and an adjusted P≤0.01. And 
the results were visualized with the ggplot2 package (version 
3.4.4).
The enrichment analysis of Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) of DEGs were 
performed by clusterProfiler package (version 4.10.0)[22]. We 
utilized the Benjamini-Hochberg method to control the false 
discovery rate for multiple hypothesis testing. A P-value ≤0.05 
were considered statistically significant. Since enrichment 
analysis may output a redundancy list of significant terms with 
duplicate information, the rrvgo package was employed to 
simplify enrichment results[23-24].
WGCNA  WGCNA co-expression network were established 
using the WGCNA package[25]. After removing the outlier 
genes, genes with the highest variability (top 50%) were 
selected as the input data for WGCNA. The optimal soft 
threshold power was selected to build a scale-free network. 
Subsequently, the adjacency matrix was converted into a 
topological overlap matrix for assessing the gene network 
connectivity. To further identify genes strongly associated 
with RIRI, the average linkage hierarchical clustering was 
applied for classifying genes with similar expression profiles 
by gene modules. The minimum number of genes required to 
form a module was 30 for the gene dendrogram. Ultimately, 
the relationships between the modules and clinical phenotype 
were estimated through Pearson correlation analysis, and the 
modules with highest correlation coefficient were selected for 
further research.
Construction of Protein-protein Interaction Network  We 
intersected genes in the key modules of WGCNA and DEGs. 
The intersecting genes were uploaded to the Search Tool for 
the Retrieval of Interacting Genes (STRING) database (https://
cn.string-db.org) to identify those with strong correlations, 
setting the medium confidence set to 0.4. For protein-protein 
interaction (PPI) establishment, all seven active interaction 
sources (text-mining, experiments, databases, co-expression, 
neighborhood, gene fusion and co-occurrence) were used. 
Then, Cytoscape 3.9.1 (https://cytoscape.org) from National 
Resource for Network Biology was used to construct the PPI 
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network based on the protein interaction data obtained from 
STRING and to calculate their degree values. After selecting 
the largest subnetwork, the top genes were picked as hub genes 
based on their maximal clique centrality (MCC) rankings after 
computing the PPI network in CytoHubba (version 0.1).
Analysis of Immune Infiltration and Correlation with 
Hub Genes  We used quanTIseq algorithm, which applies 
constrained least square regression, to assess the relative 
abundance of 10 distinct immune cells by using the IOBR 
tool[26-27]. In addition, we used the Wilcoxon rank sum test, 
provided by the stats package (version 4.2.1), to assess the 
differences in immune infiltration, which were visualized with 
the Violin Plot. Furthermore, we calculated the Spearman 
correlation coefficient for each immune cell type and presented 
the results with a correlation heatmap. We also visualized the 
correlation coefficients between the identified hub genes and 
immune cells using Lollipop charts.
scRNA-seq Data Analysis  We used the Seurat package 
to analyze scRNA-seq data (PRJNA859197), including 3 
control samples and 3 IR samples. For downstream analyses, 
we excluded cells with genes expressed in less than 5 
cells and a total number of expressed genes less than 300. 
Subsequently, data normalization and scaling were conducted, 
followed by the identification of 2000 highly variable genes. 
Principal component analysis was applied for dimensionality 
reduction, and the Harmony algorithm was used for batch 
effect correction[28]. Cells were clustered based on their gene 
expression profiles, and clusters were annotated with biological 
cell types. The DimPlot function was used to visualize cell 
clusters in reduced-dimensional space, while FeaturePlot 
function overlayed gene expression levels on this space to 
show where specific genes are expressed across clusters. 
Finally, the cellular crosstalk was calculated with CellChat 
package[29].
Electroretinogram  Electroretinogram (ERG) was performed 
24h after retinal reperfusion in mice using the Espion Visual 
Electrophysiology System (Diagnosys, USA), refering to the 
previous method of our group[30]. The pupils were dilated with 
0.5% tropicamide and 0.5% phenylephrine hydrochloride 
(Mydrin-P, Santen Pharmaceutical, Osaka, Japan). The mice 
were kept warm in the prone position throughout the recording 

process. ERG was recorded by means of a golden ring that 
made contact with the corneal surface through a layer of 0.2% 
carbomer. Additionally, needle electrodes were inserted into 
the cheeks and tails of animals and served as the reference and 
ground leads, respectively. First, after 12h of dark adaptation, 
the scotopic ERG was recorded with light stimulation of 
0.01 cd·s/m2 and 20 cd·s/m2 respectively; then after 15min 
of light adaptation, the photopic ERG was recorded using a 
light stimulation of 20 cd·s/m2 against a white background 
(100 cd·s/m2). Finally, light-adapted 10 Hz flicker ERG was 
recorded.
Hematoxylin-Eosin Staining of Retina  Whole globes were 
immersion fixed in 4% PFA overnight at 4℃, followed by 
paraffin processing. Eyes were sectioned at 6 μm and stained 
with hematoxylin and eosin (H&E). Entire retinas were 
imaged, ora serrata to ora serrata through the optic nerve head.
Quantitative Real-Time Polymerase Chain Reaction  Total 
RNA was extracted from the retinas with the MolPure® Cell/
Tissue Total RNA Kit (Yeasen) according to the manufacturer’s 
instructions. cDNA was synthesized with the NovoScript® Plus 
All-in-one 1st Strand cDNA Synthesis SuperMix (Novoprotein) 
according to a standard protocol. Quantitative analysis was 
conducted by the Light Cycler 480 real-time PCR system 
(Roche Molecular Systems, Inc., SUR). The expression of 
target mRNAs was measured and normalized to that of β-actin. 
Finally, fold change was calculated with 2-ΔΔCt method. The 
primers are summarized in Table 1.
Statistical Analysis  Statistical analyses were conducted using 
R software (version 4.3.2) and the GraphPad Prism software 
(version 10.0). All tests were two-sided, and a P-value <0.05 
was considered statistically significant.
RESULTS
The study flow chart is shown in Figure 1.
DEGs in RIRI Linked to Inflammation and Immune 
Regulation Through GO and KEGG Pathways  To identify 
genes with altered expression in RIRI, differential gene 
expression analysis was conducted. We identified a total of 
707 DEGs between 8 IR samples and 8 control samples with 
the screening criteria of an adjusted P≤0.01 and |log2FC|≥2. 
Among these DEGs, 606 genes were found to be up-regulated 
while 101 genes were down-regulated (Figure 2A). A heatmap 

Table 1 The primers for qRT-PCR

Parameters Irf7 Tap1
Sequence (forward) CTT CAG CAC TTT CTT CCG AGA GAA GCT TCA GTT CAC CCA
Sequence (reverse) TGT AGT GTG GTG ACC CTT GC CAC AAG GCC TTT CAT GTT TG
NCBI gene accession number NM_016850.3 NM_001161730.1
Primer location (nucleotide position) F: 789-808; R: 928-909 F: 518-1535; R: 1677-1658
Intron/exon location exon 4, 6 exon 6-8

qRT-PCR: Quantitative real-time polymerase chain reaction.
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was created to visualize DEGs expression patterns, which 
underscored the distinct transcriptional landscape induced 
by RIRI (Figure 2B). These DEGs were further analyzed to 
understand the biological processes and pathways involved. 
GO and KEGG enrichment analyses were performed to 
provide insights into the underlying biological functions and 
pathways.
The results of the GO functional analysis included biological 
processes, cellular components, and molecular functions, with 
a total of 2153 GO terms identified. The 20 most significant 
terms were displayed in a bubble plot (Figure 2C). To address 
redundancy among the GO terms, we simplified the list based 
on semantic similarity and visualized it in a treemap (Figure 
2D). The analysis revealed that the DEGs are predominantly 
involved in several biological processes, including leukocyte 
proliferation, epithelial morphogenesis, negative regulation 
of leukocyte activation, negative regulation of immune 
system processes, regulation of the extracellular regulated 
protein kinase 1 (ERK1) and ERK2 cascade, regulation of 
hemopoiesis, and cytokine-mediated signaling pathways. 
A total of 90 KEGG pathways were obtained. Among them, the 
most significant 20 pathways were displayed on the bubble plot 
and summarized by category shown in the bar graph (Figure 
2E-2F). The KEGG pathways revealed significant involvement 
in immune-related pathways, including tumor necrosis 
factor (TNF) signaling pathway, cytokine-cytokine receptor 
interaction, JAK-STAT signaling pathway, Viral protein 
interaction with cytokine and cytokine receptor, C-type lectin 
receptor signaling pathway, Complement and coagulation 
cascades and nuclear factor (NF)-kappa B signaling pathway. 
Together, these analyses revealed these DEGs, which not only 
exhibited markedly changed expression in the disease but also 
had a significant correlation with inflammation.

WGCNA Identifies Gene Modules Strongly Linked to 
RIRI and Potential Therapeutic Targets  WGCNA was 
used to identify gene sets with strong covariation in RNA-seq 
samples, revealing gene modules linked to RIRI and potential 
biomarker or therapeutic target genes. Hierarchical clustering 
found no outlier samples (Figure 3A). The top 50% of genes 
with the highest variance were selected, and a soft threshold 
of β=3 (scale-free R2=0.911) was chosen to build the network 
(Figure 3B). Seven gene modules were identified (Figure 3C), 
and heatmaps showed the topological overlap and module 
relationships (Figure 3D-3E). The blue, brown, and turquoise 
modules were strongly associated with RIRI, with the blue 
and brown modules showing the highest correlation (0.81 and 
0.89, P<e-200; Figure 3F-3G). The top 100 genes from these 
modules were selected for further study.
WGCNA and DEGs integration identifies hub genes 
in RIRI  After combining WGCNA and DEGs results, 
84 differentially co-expressed RIRI genes were identified 
(Figure 4A). GO analysis showed these genes are involved 
in immune response pathways (Figure 4B). PPI analysis 
revealed a network of 81 nodes and 190 edges, and the largest 
subnetwork (55 nodes) were selected for subsequent analysis 
(Figure 4C). We identified 8 hub genes: Stat2, Irf7, Irgm1, 
Igtp, Parp9, Irgm2, Nlrc5, and Tap1 (Figure 4D). These genes 
were significantly elevated in the IR group (Figure 4E).
Deconvolution Analysis Identifies Coordinated Immune 
Cell Infiltration in RIRI Retinas  In order to provide valuable 
insights into the composition and function of infiltrating 
immune cells, QuanTIseq was based on deconvolution 
algorithm for RNA-seq data to quantify the distinct 10 
immune cell types within the samples. These immune cells 
included B cell, M1 macrophage, M2 macrophage, monocyte, 
neutrophil, natural killer cell (NK), CD4 T cell, CD8 T cell, 

Figure 1 Flow diagram of the study  DC: Dendritic cell; IOP: Intraocular pressure; PPI: Protein-protein interaction; WGCNA: Weighted gene co-

expression network analysis; qPCR: Quantitative real-time polymerase chain reaction.

Key immune regulators in RIRI
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regulatory T cell and dendritic cell (DC). The Stacked bar 
chart with dendrogram revealed the proportion of all kinds of 
immune cells between samples (Figure 5A). As shown in the 
violin plot, we compared the percentage of various immune 
cell infiltration in IR and control retinas (Figure 5B). There 
was a marked increase in the proportion of M2 macrophage, 
neutrophils, CD8 T cells and DCin IR group. Furthermore, the 
correlation analysis of the 10 immune cell types was conducted 

(Figure 5C). Interestingly, B cell, M2 macrophage, monocyte, 
neutrophil, NK, CD4 T cell, CD8 T cell and DC exhibit strong 
correlations with each other, indicating a coordinated and 
interconnected immune response in RIRI retinas.
Hub Genes Correlation with Diverse Immune Cells in RIRI  
To clarify the relationship between hub gene and RIRI immune 
cell infiltration, we investigated the correlation between the 
hub genes and immune cells. The hub genes displayed little 

Figure 2 Comprehensive gene expression and enrichment analysis of RIRI  A: The volcano plot illustrated DEGs between RIRI and control 

samples, highlighting significant upregulated (orange) and downregulated (green) genes. B: The heatmap displayed DEGs across samples, 

distinguishing expression patterns between RIRI and control groups. C: The bubble plot depicted the top 20 enriched GO terms for biological 

processes, with bubble size indicating the number of genes and color reflecting enrichment significance (FDR). D: The treemap simplified GO 

terms by grouping similar biological processes based on semantic similarity, offering a clearer overview of key functions involved in RIRI. E: 

The bubble plot showed the top 20 enriched KEGG pathways linked to DEGs, where bubble size represented the number of genes, and color 

indicates significance. F: The bar graph categorized the top 20 enriched KEGG pathways by pathway types, such as environmental information 

processing and human diseases, emphasizing their biological relevance to RIRI. RIRI: Retinal ischemia-reperfusion injury; DEGs: Differentially 

expressed genes; GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes.
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Figure 3 Identification of key modules by WGCNA  A: Sample dendrogram and trait heatmap showing hierarchical clustering of IR and control 

samples based on gene expression profiles. B: Plots for scale independence and mean connectivity across different soft threshold powers to 

select the appropriate power for WGCNA. C: Cluster dendrogram of genes, with each color representing a distinct co-expression module. D: 

Heatmap displaying the topological overlap matrix for gene co-expression relationships. E: Module correlation heatmap showing relationships 

among identified modules. F: Heatmap representing the module-trait relationships, where each cell’s upper value is the correlation coefficient, 

and the lower value is the P-value. G: Scatter plots showing the relationship between module membership and gene significance for the three 

most significant modules: blue, brown, and turquoise, with correlation coefficients and P-values. WGCNA: Weighted gene co-expression 

network analysis.

Key immune regulators in RIRI
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or no correlation with M1 macrophage and regulatory T cell. 
However, a significant correlation was observed between the 
hub genes and a wide variety of immune cells (Figure 6A-6H). 
These results suggest that the varied expression levels of hub 
genes have a unique effect on the immune infiltration of RIRI.

scRNA-seq and Bulk RNA-seq Identify Irf7 and Tap1 
as RIRI Therapeutic Targets  We conducted scRNA-
seq analysis to further clarify the specific roles of immune 
cells in RIRI, which provided a high-resolution view of hub 
gene expression within distinct immune cell subclusters and 

Figure 4 Identification of hub genes by PPI  A: Venn diagram showing the overlap between DEGs, the brown module, and the blue module; B: 

Chord diagram representing the top 9 enriched GO terms associated with the intersecting genes, with links between genes and their respective 

biological processes; C: PPI network of intersecting genes, highlighting key nodes based on their degree of connectivity; D: Identification of 8 

hub genes (Stat2, Irf7, Irgm1, Igtp, Parp9, Irgm2, Nlrc5, and Tap1) from the PPI network, ranked by their importance using the MCC algorithm; 

E: Violin plots showing the expression levels of the 8 hub genes in the IR and control groups, with significant differences indicated by cP<0.001. 

PPI: Protein-protein interaction; MCC: Maximal clique centrality; DEGs: Differentially expressed genes; GO: Gene Ontology; IR: Ischemia-

reperfusion; Ctrl: Control group.
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Figure 5 Analysis of immune infiltration  A: Stacked bar chart showing the proportions of different immune cell types across samples, with 

hierarchical clustering distinguishing between control and IR groups; B: Violin plots comparing the proportions of various immune cell types 

between the IR and control groups, with significant differences; C: Heatmap showing correlation analysis between different immune cell 

types, with color indicating the strength and direction of the correlation. IR: Ischemia-reperfusion; Ctrl: Control group; NK: Natural killer; Tregs: 

Regulatory T cell.

Figure 6 Correlation between hub genes and infiltrating immune cells  Correlation analysis of Stat2, Irf7, Irgm1, Igtp, Parp9, Irgm2, Nlrc5, and 

Tap1 with various immune cell types. The size of the dots represents the strength of the correlation (correlation coefficient), while the color 

gradient indicates the significance of the P-value. aP<0.05, bP<0.01, and cP<0.001. ns: Not significant.

Key immune regulators in RIRI



1245

Int J Ophthalmol,    Vol. 18,    No. 7,  Jul. 18,  2025         www.ijo.cn
Tel: 8629-82245172     8629-82210956      Email: ijopress@163.com

Figure 7 Quality control and integration of scRNA-seq dataset  A: Quality control plots showing cell sample reliability, including nFeature_RNA, 

nCount_RNA, and percent.mt distributions across six sample groups. Scatter plots depict the relationship between nCount_RNA and percent.mt, and 

between nCount_RNA and nFeature_RNA, with correlation values shown. B: Volcano plot of the 2000 most highly variable genes, highlighting 

the top 10 genes in red. C: t-SNE plots demonstrating the distribution of different samples before and after applying the harmony embedding 

for data integration. Sample 1-3: Control group; Sample 4-6: IR group.

uncovered the cell-cell communication networks driving the 
immune response. After integrating data from control (16 927 cells) 
and IR groups (45 767 cells), a total of 62 694 cells were 
identified. Quality control was performed using gene count, 
UMI count, and mitochondrial gene percentage (Figure 7A). 
Harmony integration was applied to correct batch effects, 
leading to a more uniform mix of cells from different samples 
(Figure 7C). t-SNE analysis revealed eight major cell clusters, 
including rods, cones, bipolar cells, Müller cells, astrocytes, 
endothelial cells, and immune cells based on canonical markers 
and the most variable upregulated genes (Figures 8A, 9A). 
Given the strong connection between hub genes and immune 
cells from the bulk RNA-seq analysis, 20 320 immune cells 
expressing Ptprc (CD45) were isolated for further investigation 
(Figure 9C). These immune cells were grouped into six 
subclusters: microglia, monocytes, macrophages, neutrophils, 
DC, and NK&T cells (Figures 8B, 9B). The expression levels 
of the eight hub genes (Stat2, Irf7, Irgm1, Igtp, Parp9, Irgm2, 
Nlrc5, Tap1) across these immune subclusters were visualized 
through violin and t-SNE plots (Figure 9D).
Irf7 was predominantly expressed in microglia, indicating 
its crucial role in microglial activation and pro-inflammatory 

responses during RIRI. Similarly, Tap1 was mainly expressed 
in DC, suggesting its involvement in antigen presentation and 
immune activation. These findings align with the bulk RNA-
seq data, confirming that Irf7 and Tap1 are key regulators of 
immune responses in RIRI.
To further explore how immune cells coordinate in RIRI, 
CellChat was used to analyze cell-cell communication, focusing 
on the secretion patterns of immune cells based on ligand-
receptor interactions. Significant interactions were observed 
between microglia and other immune cells like monocytes and 
DCs, with microglia showing interactions with all immune cell 
types (Figure 10A). A Sankey plot depicted three major outgoing 
communication patterns: Microglia were primarily involved in 
Pattern 2, which included pathways like secreted phosphoprotein 
1 (SPP1), galectin, and complement, highlighting their role in 
tissue repair and immune recruitment. DCs were associated 
with Pattern 3, driven by the chemokine (C-X-C motif) ligand 
(CXCL), which is crucial for recruiting and activating other 
immune cells (Figure 10B). Other immune cells participated 
in Pattern 1, which involved chemokine (C-C motif) ligand 
(CCL), macrophage migration inhibitory factor (MIF), and 
TNF, indicating their role in propagating inflammation.
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Figure 9 scRNA-seq analysis of RIRI  A: t-SNE plot showing the clustering of all retinal cells from control and IR groups, with distinct cell types 

labeled (AC, CBC, Cone, Glial, Immune, RBC, Rod, VEC); B: t-SNE plot showing six immune cell subclusters, including DC, macrophages, microglia, 

monocytes, neutrophils, and NK&T cells; C: Expression of Ptprc in all retinal cells and specifically in immune cell clusters; D: Violin plots 

displaying the expression levels of 8 hub immune genes (Stat2, Irf7, Irgm1, Igtp, Parp9, Irgm2, Nlrc5, Tap1) across the immune cell subclusters. 

AC: Amacrine cells; CBC: Cone bipolar cells; Cone: Cone photoreceptors; Glial: Glial cells; Immune: Immune cells; RBC: Rod bipolar cells; Rod: 

Rod photoreceptors; VEC: Vascular endothelial cells; DC: Dendritic cells; NK&T: Natural killer and T cells; RIRI: Retinal ischemia-reperfusion 

injury; IR: Ischemia-reperfusion.

Figure 8 Clustering strategy of cell populations  A: Heatmap displaying the scaled expression values of canonical markers defining major 

retinal clusters. B: Heatmap showing the scaled expression values of markers defining various immune cell clusters. AC: Amacrine cells; CBC: 

Cone bipolar cells; Cone: Cone photoreceptors; Glial: Glial cells; Immune: Immune cells; RBC: Rod bipolar cells; Rod: Rod photoreceptors; VEC: 

Vascular endothelial cells; DC: Dendritic cells; NK&T: Natural killer and T cells.

Key immune regulators in RIRI
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This scRNA-seq analysis complements the bulk RNA-seq 
findings by providing cellular-level detail, showing how hub 
genes identified in the bulk analysis, particularly Irf7 and Tap1, 
are specifically expressed in different immune cell subtypes 
and how these cells communicate during RIRI. These results 
offer a deeper understanding of the immune cell infiltration 
in RIRI and highlight Irf7 and Tap1 as potential therapeutic 
targets for modulating immune responses to improve 
recovery.
qRT-PCR Confirm Expression of Irf7 and Tap1 in RIRI  
To further confirm the findings from the bulk and scRNA-
seq analyses, we successfully established the RIRI model. 
The edema of the cornea, the decrease of ERG amplitude, the 
thinning of retinal thickness and the loss of ganglion cells in 
HE staining indicated the successful establishment of the RIRI 
model (Figure 11A-11C). Quantitative real-time polymerase 
chain reaction (qRT-PCR) were employed to validate the 
expression of Irf7 and Tap1 in RIRI. The qRT-PCR validation 
results showed that both Irf7 and Tap1 were significantly 
upregulated in the IR group one day after RIRI (Figure 11D).

DISCUSSION
In this study, by applying WGCNA, differential gene 
expression analysis, and PPI analysis of bulk RNA-seq data, 
we identified 8 hub genes (Stat2, Irf7, Irgm1, Igtp, Parp9, 
Irgm2, Nlrc5 and Tap1) that are significantly associated 
with RIRI. To complement this, we performed scRNA-seq 
analysis, which revealed that Irf7 is predominantly expressed 
in microglia and Tap1 in DC, confirming their roles in 
inflammation and immune activation during RIRI. We also 
found increased infiltration of immune cells, such as M2 
macrophages, neutrophils, CD8 T cells, and DC, in the IR 
group, indicating a complex immune response. Through cell-
cell communication analysis, we showed that microglia and 
DC play central roles in coordinating immune activity. Finally, 
we validated the upregulation of Irf7 and Tap1 using qRT-PCR. 
Together, our bulk RNA-seq and complementary scRNA-seq 
analysis suggest that Irf7 and Tap1 are potential therapeutic 
targets for modulating immune responses in RIRI.
RIRI frequently results in irreversible neurological damage 
to the retina and profoundly affects the socioeconomic status 

Figure 10 Cell-cell communication patterns in RIRI  A: The number and strength of interactions between six immune cell subclusters: microglia, 

NK&T cells, neutrophils, macrophages, monocytes, and DC. B: Sankey plots illustrating the inferred outgoing communication patterns of 

secreting cells, linking specific cell groups to signaling patterns and associated signaling molecules. CCL: Chemokine (C-C motif) ligand; MIF: 

Macrophage migration inhibitory factor; SPP1: Secreted phosphoprotein 1; TNF: Tumor necrosis factor; CXCL: Chemokine (C-X-C motif) ligand; 

RIRI: Retinal ischemia-reperfusion injury; DC: Dendritic cells; NK&T: Natural killer and T cells.
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Figure 11 Validation of Irf7 and Tap1 in control and IR groups  A: Eyeballs of mice under the microscope before and after operation, scale bar=1000 μm; 

B: Electroretinogram in different modes in the control and IR groups; C: HE staining of retinas from control and IR groups, scale bar=100 μm. D: 

Expression levels of Irf7 and Tap1 in control and IR groups. IR: Ischemia-reperfusion; Ctrl: Control group; HE: Hematoxylin-eosin. bP<0.01; cP<0.001.

of both patients and the healthcare system[31-33]. However, its 
specific mechanisms remain to be explored. The severity and 
prognosis of RIRI has been determined to be significantly 
controlled by inflammation and immune infiltration[34]. 
The immune cell infiltration provides valuable insights 
into the forecasting disease progression and therapeutic 
efficacy by understanding the role of immune cells in the 
microenvironment[14,35]. Moreover, the composition and 
phenotype of immune cells are also altered depending 
on the degree and stage of injury. Therefore, combining 
bioinformatics and integrating the data of existing studies to 
study the inflammatory and immune response of RIRI is an 
urgent need and of great significance.
To our best knowledge, this study is the first to integrate 
transcriptomics data from both bulk RNA-seq and scRNA-seq 
to explore the molecular mechanisms underlying RIRI at both 
the whole tissue and single-cell levels. This approach allowed 
us to gain a comprehensive understanding of the immune cell 
infiltration and identify potential therapeutic targets.
To further elucidate the roles of these key immune regulators, 
we will discuss the mechanisms and functions of Irf7 and 
Tap1 in the immune response to RIRI in detail. Irf7, interferon 
regulatory factor 7, belongs to the interferon regulatory factor 
family and is one of the major regulators of type I interferon 

production. It plays a key role in antiviral immune response 
and a variety of autoimmune diseases[36-37]. Irf7 expression is 
upregulated not only in RIRI, but also in retinal inflammation 
caused by other diseases such as macular degeneration and 
retinal detachment[38]. Irf7 is a critical transcription factor 
regulating microglial activation, particularly through the pro-
inflammatory (M1) and anti-inflammatory phenotype (M2) 
polarization balance, playing roles in neuroinflammation, 
spinal cord injury response, neurodegeneration, and tumor 
environments[39-46]. Under physiological conditions, microglia 
are exposed to high levels of transforming growth factor 
β1 (TGFβ1) in the brain, leading to low expression of Irf7, 
which keeps microglia in a relatively inactive state (M0)[39]. 
Upon injury or inflammation, the expression of Irf7 increases, 
promoting a M1 state in microglia[41-42]. Conversely, its 
downregulation promotes the phenotypic switch of microglia 
from M1 to M2, promoting anti-inflammation and tissue 
repair[40,44]. Similarly, we also found that Irf7 expression 
increased in the IR group, especially in microglia, during the 
acute phase of RIRI (Figures 4E, 6B, 9D). This suggests that 
high Irf7 expression is a switch for microglia activation and 
M1 polarization during the acute phase of RIRI. Moreover, 
our research found that microglia, the resident immune cells of 
the central nervous system, showed extensive communication 

Key immune regulators in RIRI
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with monocytes and DC, emphasizing their central role in 
orchestrating the immune response to retinal injury (Figure 
10). These interactions imply that microglia may recruit 
and activate other immune cells in the early stages of retinal 
inflammation.
Tap1, transporter associated with antigen processing 1, plays a 
crucial role in the antigen presentation process by transporting 
peptides into the endoplasmic reticulum for loading onto MHC 
class I molecule[47]. In DCs, the expression and localization of 
Tap1 are significantly influenced by the maturation state of the 
cells[48-49]. During DC maturation, Tap1 relocates from early 
endosomes in monocytes to the ER and lysosomes in immature 
and mature DCs, enhancing their ability to cross-present 
antigens to cytotoxic T lymphocytes[50]. This upregulation and 
relocalization of Tap1 are essential for the effectiveness of DC 
in initiating immune responses[47,51]. Consistently, our findings 
revealed that Tap1 expression in DC was upregulated in the IR 
group, supporting its role in DC-mediated immune responses 
during RIRI (Figures 4E, 6D, 9D).
This study brings several novel insights into the understanding 
of RIRI. We are the first to demonstrate the critical roles of Irf7 
and Tap1 in RIRI at both the transcriptomic and single-cell 
levels. Specifically, Irf7 plays a pivotal role in the activation 
and polarization of microglia towards the pro-inflammatory 
(M1) state during the acute phase of RIRI, while Tap1 is 
essential for DC maturation and antigen presentation. These 
findings highlight the potential of targeting Irf7 and Tap1 
to modulate immune responses, opening new avenues for 
microglia-based and DC-based immunotherapies in RIRI.
Although we tried our best efforts to enhance the reliability 
of the findings by utilizing multiple analysis methods and 
validation in vivo, this study still has some limitations. First 
of all, due to the limited availability of RIRI transcriptomic 
datasets in public databases, our sample size is far from 
enough. Second, although the data sets used in this study 
were collected from the acute phase of RIRI, the inconsistent 
time points and the possible batch effect may have affected 
the accuracy of our results. Finally, it remains unclear how 
the inflammation and immune microenvironment change at 
different stages of RIRI (acute, subacute, and chronic phases), 
and how key immune regulators function throughout the 
process. Therefore, Future studies should focus on investigating 
the dynamic changes in the immune microenvironment over 
time and on expanding the sample size. Clinical evaluations 
involving both patients and healthy controls are also necessary 
to confirm the relationships between key immune regulators, 
immune infiltration, and clinical characteristics.
In conclusion, in this study we provide new insights into the 
molecular mechanisms of RIRI by identifying key immune-
related hub genes, particularly Irf7 and Tap1, which play 

crucial roles in microglial activation and DC maturation. 
Targeting these genes may offer novel therapeutic strategies 
for modulating immune responses and improving clinical 
outcomes in the acute phase of RIRI.
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