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Abstract
● To review the existing deep learning applications 
for diagnosing diabetic retinopathy and retinopathy of 
prematurity diseases, the available public retinal databases 
for the diseases and apply the International Journal of 
Medical Informatics (IJMEDI) checklist were assessed the 
quality of included studies; an in-depth literature search in 
Scopus, Web of Science, IEEE and ACM databases targeting 
articles from inception up to 31st January 2023 was done 
by two independent reviewers. In the review, 26 out of 1476 
articles with a total of 36 models were included. Data size 
and model validation were found to be challenges for most 
studies. Deep learning models are gaining focus in the 
development of medical diagnosis tools and applications. 
However, there seems to be a critical issue with most 
of the studies being published, with some not including 
information about data sources and data sizes which is 
important for their performance verification.
● KEYWORDS: diabetic retinopathy; retinopathy of 
prematurity; retinal vessel segmentation; retinal database; 
deep learning
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INTRODUCTION

D iabetic retinopathy (DR) is a retina vessel disorder 
which occurs because of prolonged effects of diabetes 

mellitus[1]. In the year 2020, people suffering from the disease 
globally were estimated to be 103.12 million. These numbers 
are estimated to rise to 160.50 million by 2045, with low- 
and middle-income countries being affected the most[2]. It 
is estimated that the people living with DR the statistics 
will rise to 643 million by 2023 and worse to 783 million 
by 2045[3]. Retinopathy of prematurity (ROP) is a disease 
of retinal vascular and capillary proliferation which affects 
babies born preterm[4]. ROP disease is the leading cause of 
preventable global childhood blindness[4-6]. ROP disease has 
five stages of development, ranging from stage 1 to stage 5[7-9]. 
For stage 1, which is the initial stage, the eye develops a thin 
demarcation white line separating retinal regions of the eye 
and hence preventing flow of blood to the rest of the eye[8-9]. This 
occurs because of abnormal growth of blood vessels and if 
not diagnosed and treated, the demarcation line grows thicker 
forming a pinkish ridgeline which now becomes stage 2[8-9].
In stage 3, the pinkish ridgeline grows broader resulting in 
the formation of abnormal blood vessels. This stage usually 
requires urgent treatment to prevent progression to the 
next stages (stage 4 and stage 5)[8-9]. In stage 4, which is an 
advanced stage, the retina detaches partially[8-9]. For stage 5, 
the retina detaches completely resulting in blindness. Stages 1 
and 2 of ROP can heal without treatment but once the disease 
progresses to stage 3, it must be diagnosed and treated to stop 
it from progressing to stages 4 and 5 which are more severe 
stages[8-9].
Recently, there have been advancements in the development of 
deep learning (DL) applications for retinal diseases diagnosis. 
These systems have the capability to utilize huge datasets 
for training and testing. Even though these models produce 
promising accuracy, there are observed variations across the 
studies in the dimensions of model design, results, data sizes 
and validation methods. The aim of this systematic review 
was to: 1) identify studies which have used DL for DR and 
ROP diseases diagnosis, 2) use the IJMEDI guidelines to 
assess the quality of the included literature, 3) summarize the 
work of different studies which have applied DL for DR and 
ROP disease diagnosis, establishing their models design and 
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performance, 4) summarize the current challenges associated 
with developing DL models for DR and ROP disease diagnosis 
for future reference.
MATERIALS AND METHODS
The protocol was registered in International Prospective 
Register  of  Systematic Reviews (PROSPERO), an 
internationally recognized register for systematic reviews 
under (ID-409975, 21 March 2023) and was approved by 
Strathmore University Institutional Scientific and Ethical 
Review Committee (SU-ISERC), certificate number: SU-
ISERC1534/22 and additionally cleared by the Kenya 
National Commission for Science, Technology and Innovation 
(NACOSTI), license number: NACOSTI/P/23/23702. We 
confirm that the work did not involve direct participation 
of human subjects or animals. Preferred Reporting Items 
for Systematic Reviews and Meta-Analyses (PRISMA) 
guidelines[10] were adopted while conducting the systematic 
review and the study period was from inception to 31st January 
2023. The review was done by two independent reviewers. The 
study questions for this review were structured as “Which deep 
learning models have been developed for diabetic retinopathy 
and retinopathy of prematurity diseases diagnosis”.
Search Strategy
Electronic database search  PRISMA guidelines were 
applied in conducting the review through evaluating the 
effects of new interventions, paying much focus to the 
study objectives other than evaluating the stated use of the 
interventions. An in-depth literature search was conducted 
in the following electronic databases: Scopus, Web of 
Science Core Collection, IEEE, and ACM. The in-depth 
search was conducted on the databases from inception up 
to 31st January 2023. Studies reviewed were publications 
on DL application for DR and ROP. The search terms 
included a wide range of terms such as: “Diabetes”[MeSH] 
OR “diabetes”[tiab] OR “diabetes retinopathy”[tiab] OR 
“Retinopathy”[MeSH] OR “retinopathy”[tiab] OR “retinopathy 
of prematurity”[tiab] OR “retina image segmentation”[tiab] 
OR “Deep Learning”[MeSH] OR “Neural Network”[MeSH] 
OR “diagnosis”[tiab] OR “retinal disease diagnosis” OR “deep 
learning architecture”[tiab] OR “retina image analysis”[tiab].
Extra manual search  In addition to reviewing studies from 
online databases, we checked for articles related to those on 
our list of references, and further for more literature from 
OpenSIGLE.OAI from inception to 31st January 2023. During 
the search, we identified more articles which were important 
for the study.
Criteria for studies exclusion and inclusion  Studies that 
were included met the following criteria: 1) DL applications for 
Diabetic Retinopathy disease diagnosis and 2) DL application 
for ROP disease diagnosis. Details of importance included year 

of publication, database(s) used, model design, model accuracy 
and model validation methods. Publications/studies whose full 
content access was not granted, reviews and articles whose 
data sources was not available, studies not related to humans, 
or any publication not written in English were excluded.
Data Analysis and Synthesis  Two reviewers (Kasamani BS 
and Reich C) first checked the articles titles and abstracts to 
confirm if they met the study objectives. Studies meeting the 
inclusion criteria were examined blindly to confirm if they 
contained methodical elements and results. Information of 
importance to our study was extracted and reports of the two 
reviewers were compared. Any disagreements were resolved 
by consensus. Information recorded included: 1) year of 
publication, 2) DL architecture used to build the model, 3) 
results, 4) model limitations, 5) model accuracy, specificity, 
sensitivity, 6) model validation method, 7) retina database size, 
description, and owners.
Studies Quality Assessment and Reporting  Two reviewers 
(Kasamani BS and Reich C) used the IJMEDI checklist[11] to 
assess the quality of included studies. Differences between 
their reports were solved through discussion. IJMEDI checklist 
is a quality assessment tool developed for authors and 
reviewers to assess the quality of their studies in the field of 
machine learning applications for medical solutions. The tool 
was developed to assist in distinguishing between high quality 
studies from mere machine learning applications in the medical 
field. IJMEDI checklist provides directive for study quality 
assessment using six dimensions: problem understanding, 
data understanding, data preparation, modelling, validation, 
and deployment. The checklist provides a series of thirty 
questions, each question to be answered as OK (adequately 
addressed), mR (sufficient but requires improvement) and MR 
(inadequately addressed). As guided by previous studies[12-13], 
we associated the values 2, 1, and 0 to be scored for OK, mR, 
and MR respectively for high-priority items, and 1, 0.5, and 0 
to be scored for low-priority items, the maximum number of 
points being 50. The study quality was divided into low 
(0-19.5), medium (20-34.5), and high (35-50).
RESULTS
In this section, we summarize the studies containing the 
development of DL applications for DR or ROP diseases 
diagnosis and the available retinal databases.
Search Results  Figure 1 summarized the procedure for study 
selection. A total of 1474 studies were identified after the 
initial search, 2 studies were included after a manual search, 
making the total included studies to be 1476. After removal 
of duplicates, 40 studies were identified for further screening. 
Fourteen studies were excluded for various reasons leading to 
a total of 26 studies being included in the systematic review.
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Table 1 summarized studies on DL applications for DR and 
ROP diseases diagnosis. Fourteen studies with a total of 24 
models reported on DL application for DR disease diagnosis, 
12 studies with a total of 12 models reported on DL application 
for ROP disease diagnosis. 
Deep Learning Application for Diabetic Retinopathy 
Disease Diagnosis
Binary classification  This section presents a review of studies 
whose aim was to detect the presence, absence or severity of 
DR. A study[14] developed an eight layered convolutional neural 
network (CNN), images were resized achieving an accuracy of 
94.5%. A study[15] trained three CNNs using images from three 
different databases, 88 702 images from Kaggle database, 89 
images from DiaretDB1[16] and 107 799 images from E-ophtha 
database. The work aimed at classifying the presence of the 
disease (referable: moderate or severe stage) or (non-referable: 
mild or no disease). A study[17] trained a ResNet named 
ResNet34[18] using 35 000 images from the Kaggle[19] database 
to classify images as either with DR, or normal. Image pre-
processing techniques applied to improve quality in the study 
included: Gaussian filter, weighted addition, and normalization. 
A study[20] developed a 16-layer CNN architecture similar 
to a VGG-16[21] to determine the presence of referable DR, 
achieving a sensitivity of 98.2%. The study[22] integrated 
three CNNs namely Inception V3[23], Inception-ResNet-V2[18] 
and ResNet 152[24]. The work aimed at classifying images 
as referable DR or non-referable DR. The model attained an 
accuracy of 88.21% and area under curve (AUC) of 0.946.
A study[25] constructed a 105 layered CNN named WP-CNN to 
classify DR as referable and non-referable. The study collected 

over 60 000 images plus data from STARE dataset[26]. Their 
model had a better performance than the three models and 
achieved an accuracy of 94.23% with their data and 90.84% 
with data from the STARE database. A study[27] applied 
random forest classification technique to advance the LeNet 
architecture with an aim of detecting red lesions for DR 
detection and. achieved a sensitivity of 48.71%. A study[28] 
customized CNN to detect hard exudate lesions using data 
from E-ophtha[29] database and HEI-MED[30] database. The 
model achieved a sensitivity of 0.8990, AUC of 0.9644 using 
the E-ophtha dataset and a sensitivity of 0.9477, AUC of 
0.9323 using HEI-MED dataset.
Multi-level classification of DR  This section reviews 
studies aimed at classifying the different stages of DR. A 
study[31] developed a CNN model to detect DR and diabetic 
macular edema (DME). The work used 1748 images from the 
Messidor-2[32] database and 9963 images from the eyepacs-1 
database obtaining a 96.1% sensitivity for the Messidor-2 
database, and a 97.5% sensitivity for the eyepacs-1 dataset. 
This work was limited, particularly, it did not classify the 
stages of DR or identify the images without DR. A study[33] 
developed a customized CNN to classify the five stages of DR. 
A total of 80 000 images from the Kaggle database[19] were 
used to build the model. Color normalization and resizing 
was done to achieve 512×512 pixels. The model contained 
ten convolutional layers, eight maximum pooling layers, and 
three fully connected layers. The soft maximum function was 
applied as a classifier, L2 regularization and drop out methods 
were applied to reduce model overfitting. The model achieved 
a specificity of 95%, an accuracy of 75% and a sensitivity of 
30%. This model had challenges of using images from one 
database for model building and validation and could not detect 
lesions on the images. The study[34] developed three models: 
a deep neural network (DNN), CNN and a back propagation 
neural network (BNN). The three models were designed using 
2000 images from the Kaggle database and resized to 300×300 
pixels. Morphological operations were performed on the 
images such as: conversion to grayscale and edge detection. 
The CNN model was a pretrained VGG16[21] with sixteen 
convolutional layers, four maximum pooling layers and three 
fully connected layers. The DNN was a simple architecture of 
three fully connected layers and achieved better results than 
the CNN and the BNN. One database and a few images were 
used to build the three models and hence the study could not 
learn more features from the images.
Vessel segmentation approach  This section reviews studies 
which performed vessel segmentation on the images to extract 
features for DR diagnosis. The study[35] pretrained DEEPLAB-
COCO-LARGEFOV[36] to extract retina blood vessels. Data 
was obtained from two databases: HRF[37] database, and 

Figure 1 Flow diagram of study selection.
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DRIVE[38] database and obtained an accuracy of 93.94% with 
AUC of 0.894. A study by[39] developed a customized CNN 
to extract retina blood vessels and used them as patches to 
detect DR. Data was obtained from STARE[40], DRIVE[38] 
and CHASE[41] databases achieving an accuracy of 95.82%, 
96.72% and 96.88%, and AUC of 98.30%, 98.75% and 
98.94% for the DRIVE, STARE and CHASE, respectively. A 
study[42] did a comparative study to compare the performance 
of three models: Xception, InceptionV3 and ResNet-50 for 
DR disease detection and using vessel segmentation. Inception 
model outperformed the other two models and provided a 
better classification. A study[43] developed a customized CNN, 
DenseNet-169 by adding a block attention module for vessel 
segmentation and disease severity prediction. Another study[44] 

pretrained Xception model with hierarchical image clustering 
algorithm to detect patches on the images and grade fundus 
images for DR disease diagnosis.
Deep Learning Application for Retinopathy of Prematurity 
Disease Diagnosis
Data preparation  This section reviews studies whose data 
sources and sizes were provided in the study. Sixteen studies 
were reviewed[45-60], seven of which used data from China[45-51], 
one got data from North America[52], one from America and 
Mexico[53], one from America and Nepal[54] and one got data 
from New Zealand[55]. All studies used data collected between 
the years 2011 to 2020. Five studies excluded images of poor 
quality[49-52,55]. Data was augmented before training the models 
by ten studies[44,46-50,53-55,61]. Eleven studies[46-48,50-51,54-55,57-60] 

Table 1 Characteristics of the 26 studies 

Author Year Data size Model type Disease AUC (95%CI)/accuracy Specificity/sensitivity

Wang et al[28] 2020 E-ophtha, HEI-MED CNN DR 0.9644 -/89.9%

Wu et al[39] 2020 STARE, DRIVE, CHASE CNN DR STARE=0.983/95.82%, 
DRIVE=0.9875/96.72%, 
CHASE=0.9894/96.88%

-

Liu et al[25] 2019 Private database, STARE=60000 ResNet, SeNet, DenseNet DR ANN, -/90.84% ANN

Pires et al[20] 2019 Kaggle, Messidor-2 VGG-16 DR - -/98.2%

Yan et al[27] 2019 DIARETDB1 CNN DR - -/48.71%

Zago et al[26] 2020 DIARETDB1, Kaggle, Messidor-2, 
DDR, IDRiD, DIARETDB0

Customize DCNN, VGG-16 DR 0.912/- -/94%

Jiang et al[22] 2019 DRIVE Inception V3, Inception-
ResNet-V2, ResNet 152

DR 0.946/88.21% ANN

Esfahani et al[17] 2018 Kaggle=35000 ResNet DR -/85% -/86%

Dutta et al[34] 2018 Kaggle=2000 DNN, Customize DCNN, 
BNN, VGG16

DR - -

Quellec et al[15] 2017 Kaggle=88702, DiaretDB1=89, 
E-ophtha=107799

AlexNet DR Kaggle=0.954/-, E-ophtha=0.949/- ANN

Xu et al[14] 2017 Kaggle=1000 Customize DCNN DR ANN, -/94.5% ANN

Gulshan et al[31] 2016 Messidor-2=1748, eyepacs-1=9963 Inception-V3 DR, DME - 93%, Messidor-2=96.1%, 
eyepacs

Pratt et al[33] 2016 Kaggle=80000 Customize DCNN DR -/75% 95%, 30%

Vengalil et al[35] 2016 DRIVE, HRF DEEPLAB-COCO-LARGEFOV DR 0.894/93.94% -

Chen et al[54] 2021 America and Nepal (private 
database) total range=2668 to 52249

Customize DCNN ROP 0.984/- -

Huang et al[47] 2021 China (private database)=10000 Customize DCNN ROP 0.98/- 91.13%, 95.92%

Wang et al[50] 2021 China (private database)=10000 Customize DCNN ROP 0.98/- 91.13%, 95.92%

Mao et al[48] 2020 China (private database) total 
range=2668 to 52249

Customize DCNN ROP 0.98/- 91.13%, 95.92%

Tong et al[49] 2020 China (private database)=10000 Customize DCNN ROP - 91.13%, 95.92%

Yildiz et al[53] 2020 America and Mexico (private 
database) total range=2668 to 52249

Customize DCNN ROP 0.98/- -

Hu et al[46] 2019 China (private database) total range 
= 2668 to 52,249

Customize DCNN ROP 0.984/- 95.72%, 98.15%

Tan et al[55] 2019 New Zealand (private database) total 
range=2668 to 52249

Customize DCNN ROP 0.98/- 91.13%, 95.92%

Zhang et al[51] 2018 China (private database)=10000 Customize DCNN ROP 0.984/- 95.72%, 98.15%

Brown et al[52] 2018 North America (private database) 
total range=2668 to 52249

Customize DCNN ROP 0.98/- 91.13%, 95.92%

Wang et al[45] 2018 China (private database)=10000 Customize DCNN ROP 0.984/- 95.72%, 98.15%

Raja Sankari et al[44] 2023 Private database Customize DCNN ROP -/94.5% 93%, 94%

AUC: Area under curve; CI: Confidence interval; RBFCN: Region based fully convolutional network; DCNN: Dynamic convolutional neural 

network; BNN: Bayesian neural network; CNN: Convolutional neural network; ANN: Artificial neural network; DR: Diabetic retinopathy; ROP: 

Retinopathy of prematurity.
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collected data with a gestational age (GA) of 30.9, birth 
weight (BW) of 1501.25 g. A total range of 2668 to 52 249 
images were collected by all the eleven studies. Seven studies 
developed algorithms for ROP disease diagnosis[44-47,51,54,60]. 
Seven algorithms developed algorithms to detect ROP plus 
disease with a minimum of 5358 images[48-50,53,55-56].
Model design and performance  This section reviews 
studies whose model design and results were included. All the 
sixteen studies[44-59] customized CNNs architectures ResNet, 
ImageNet, U-Net, and VGG-16 and applied transfer learning 
except Huang et al[47]. Ten studies used more than 10 000 
images[44-45,47,49-51,57-60]. One to five expert graders were used 
by all studies as a reference standard, with the majority of the 
graders agreeing upon the images used for the studies. Seven 
studies conducted external validation of their models[44-45,52-55,60]. 
Five studies were able to detect the presence of ROP with 
an average AUC of 0.984[45-47,51,54]. Six studies were able to 
detect the presence of plus disease with an average sensitivity 
and specificity of 91.13% and 95.92%, respectively[47-50,52,55]. 
Three studies reported their model sensitivity and specificity 
at an average of 95.72% and 98.15% respectively[45-46,51]. One 
study[51] did a comparison of the model performance with the 
results of an eye specialist and achieved a sensitivity of 94.1% 
and specificity of 99.3%. Six studies[47-48,50,52-53,55] produced an 
average AUC of 0.98. Two studies[48,52] were able to detect the 
presence of the pre-plus disease at an average sensitivity and 
specificity of 96.2% and 95.7% respectively.
SUMMARY OF KEY FINDINGS
Included Studies Quality Assessment  To the best of our 
knowledge, this is the first systematic review of studies on DL 
models for ROP disease diagnosis using the IJMEDI checklist 
for quality assessment. Figure 2 and Table 2 is used to explain 
the results. For all studies, it is observable that the median 
and quartile increased over the years, this is an indication that 
more studies of good quality are being published over time. 

In terms of the scores for all answers. For high quality studies 
with a total score greater than or equal to 32.5, the proportion 
for OK in high-priority items reached 70% versus their score 
for OK in low-priority items which was at an average of 30%. 
Consequently, for low quality studies whose scores were less 
than or equal to 27, the proportion for the answers MR in high-
priority items were more than 30%. Most studies failed to 
provide important information about the data used as shown in 
Figure 3. Missing information of importance included: source 
of data, database size, dataset size used for training the model, 

Figure 2 Median and quartile of quality assessment scores according to time of publication.

Figure 3 Proportion of different answers in the depth- and low-

priority items OK: Adequately addressed; mR: Sufficient but 

improvable; MR: Inadequately addressed.

Deep learning application for DR and ROP diagnosis



1599

Int J Ophthalmol,    Vol. 18,    No. 8,  Aug. 18,  2025        www.ijo.cn
Tel: 8629-82245172     8629-82210956      Email: ijopress@163.com

testing and validation which explains the curves for the 25% 
and 75% quartiles as shown by Figure 2. The scoring rate for the 
25%, median and 75% quartile curves was about 40%, 50%, 
and 60% respectively showing some significant improvement 
in model design but challenges of model validation. It was 
also noted that there were more studies published for the years 
between 2018 and 2019 than all other years. From this review, 
it is also observable that most studies had high scores with 
the least being 8 out of 10 for problem understanding and low 
scores with the highest being 3 out of 8 for deployment. This 
means that most studies were closed after publishing results 
while few studies had their output(s) implemented into real-
life clinical use. It is also observed that many studies did not 
include information on the data processing techniques applied. 
The majority of the studies used data from public databases, 
while some used few datasets which are deemed sufficient for 
training and testing their models. It is also noted that Kaggle 
and HVDROPDB databases are the only publicly available 
databases containing images of ROP. 
CHALLENGES AND FUTURE TRENDS
DL applications have widely been developed to diagnose DR 

and ROP. Despite the advancements, there are still challenges 
to be addressed. In this section, we discuss some challenges 
and future trends for these technologies which could help 
developers in this field.
Image Quality  From this review, we were able to identify the 
following two common problems associated with developing 
DL applications for DR and ROP diseases diagnosis. 1) Low 
quality images: All databases contained colored and non-
colored images. Image resolution and clarity vary from colored 
to non-colored images and this may result in an increase to 
the prediction errors. There is a need to ensure image quality 
assessment before utilizing the images for model development. 
2) Devices inconsistency: There are many different cameras 
used to capture retina images. Device inconsistency produces 
images with different orientation, size, and resolution. Images 
should be pre-processed to increase resolution, harmonize 
sizes and orientation.
Model Training  DL models require huge datasets for training 
the models to achieve better results. All databases did not 
contain adequate images for building DL models. To address 
this challenge, three methods are proposed: First, transfer 

Table 2 Quality assessment scores of the 26 studies according to the IJMEDI checklist

Author Problem 
understanding (10)

Data Understanding 
(6)

Data Preparation 
(8)

Modelling 
(6)

Validation 
(12)

Deployment 
(8)

Total 
(50)

Wang et al[28] 8 5 3 6 3 3 28
Wu et al[39] 8 5.5 3 6 5 3 30.5
Liu et al[25] 8 6 2 6 3 2.5 27.5
Pires et al[20] 8.5 6 4 6 7 2.5 34
Yan et al[27] 9.5 4 2 6 4 2 27.5
Zago et al[26] 8.5 4 3 6 5 3 29.5
Jiang et al[22] 7 6 2 6 3 2 26
Esfahani et al[17] 8.5 5.5 5 6 7 3 35
Dutta et al[34] 9 6 4 6 7 2 34
Quellec et al[15] 9.5 5 3 6 8 2 33.5
Xu et al[14] 9 5.5 4 6 4 3 31.5
Gulshan et al[31] 8.5 6 4 6 2 3 29.5
Pratt et al[33] 8.5 5 3 6 5 2.5 30
Vengalil et al[35] 8.5 5.5 4 6 3 3 30
Chen et al[54] 9 5.5 5 6 8 2.5 36
Huang et al[47] 8.5 6 3 6 7 3 33.5
Wang et al[50] 8.5 6 2 6 3 2.5 28
Mao et al[48] 9 5.5 3 6 6 3 32.5
Tong et al[49] 9.5 6 2 6 7 2 32.5
Yildiz et al[53] 9 5.5 5 6 8 3 36.5
Hu et al[46] 9.5 5.5 4 6 4 2.5 31.5
Tan et al[55] 9 6 3 6 7 2.5 33.5
Zhang et al[51] 9.5 6 4 6 3 3 31.5
Brown et al[52] 8.5 5.5 5 6 6 2.5 33.5
Wang et al[45] 9 6 4 6 7 3 35
Raja Sankari et al[44] 9.5 6 2 6 7 2 32.5
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learning can be used to allow models to utilize the knowledge 
acquired from a previous task to be used for a similar related 
task which boosts performance of the model classification 
for the current task. This method also helps to enhance the 
original input representations of data and for mapping the 
data. The second approach which can be used is customizing 
an existing similar model and changing some layers and 
fine tuning some parameters[45-49]. This is useful, since the 
model being customized is already trained with enough 
dataset(s) and images are already resized, therefore, not much 
additional work is required for data preparation. However, 
this method is limited in the fact that not every model should 
be customized especially for bioinformatics solutions. The 
third approach is applying some simulations to increase data 
volumes. Simulators can be developed to simulate the number 
of required images. However, it should be noted that not every 
problem will use simulators for data generation.
Imbalanced Data  Data in many databases are always 
imbalanced with some sets being more or lesser than the 
others. Training a DL model with imbalanced data will result 
in inaccurate results. The following two techniques can be 
used to solve this problem. First, developers require to utilize 
the correct criteria for evaluating the model loss and prediction 
result functions[50]. Another solution to this problem is to utilize 
the weighted cross entropy loss function[26-27]. This allows 
the model to produce good results with small classes through 
enabling the model to up-sample small classes or down-sample 
large classes. 
CONCLUSION
In conclusion, DL models are gaining focus in the development 
of medical diagnosis tools and applications. However, there 
seems to be a critical issue with most of the studies being 
published, with some not including information about data 
sources and data sizes. Most of the studies reviewed in 
this paper used data from one database for development, 
testing and model validation and cannot confirm the validity 
of their model results. It is also observed that Kaggle and 
HVDROPDB databases is the only publicly available 
databases containing images on ROP disease and there is need 
for the privately owned ROP disease databases to be made 
public. We also recommend that researchers should work to 
extend their studies beyond publishing to clinical practice and 
use. Addressing these issues will promote the development of 
effective, efficient, and practical DL models and applications 
for DR and ROP disease diagnosis.
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