• Clinical Research •

Impact of preoperative anterior topographic parameters on effective optical zone after keratorefractive lenticule extraction and wavefront-guided LASIK

Tsung-Hsien Tsai^{1,2}, Jui-Hung Hsu³, Erh-Tsan Lin³, Chi-Chin Sun^{1,2}

¹Department of Ophthalmology, Chang Gung Memorial Hospital, Keelung 204, Taiwan, China

²School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan, China

³Department of Medical Education, Chang Gung Memorial Hospital, Keelung 204, Taiwan, China

Co-first Authors: Tsung-Hsien Tsai and Jui-Hung Hsu

Correspondence to: Chi-Chin Sun. Department of Ophthalmology, Chang Gung Memorial Hospital, Keelung, 222 Maijin Road, Keelung 204, Taiwan, China. chichinsun@gmail.com

Received: 2025-03-08 Accepted: 2025-08-20

Abstract

- AIM: To investigate the impact of preoperative anterior corneal topographic parameters on the morphology of the postoperative effective optical zone (EOZ) in patients undergoing keratorefractive lenticule extraction (KLEx) and wavefront-guided LASIK (WG-LASIK).
- **METHODS:** This retrospective study included 310 eyes from patients who underwent either KLEx (*via* small incision lenticule extraction, 171 eyes) or WG-LASIK (139 eyes). Patients were stratified into subgroups based on the median values of spherical equivalent (SE) and anterior corneal topographic parameters. Postoperative EOZ parameters were measured 1mo after surgery and compared across subgroups. Correlation analysis and multivariable linear regression analysis were performed to explore the associations between preoperative anterior corneal topographic parameters and EOZ parameters.
- **RESULTS:** A total of 310 eyes were included (KLEx: 171 eyes from 88 patients; WG-LASIK: 139 eyes from 82 patients). The mean age was 30.65±5.67y in the KLEx cohort and 29.06±5.94y in the WG-LASIK cohort. In the KLEx cohort, SE, preoperative mean keratometry (Km), steep keratometry (K2), and anterior corneal astigmatism (K2-K1) were positively correlated with the postoperative optical zone reduction ratio (RR=EOZ/planned optical zone ×100%; all *P*<0.01). Multivariable regression identified

SE [β =0.027, 95% confidence interval (CI): 0.022-0.032, P<0.001], Km (β =0.009, 95%CI: 0.002-0.016, P=0.014), and anterior corneal astigmatism (β =0.031, 95%CI: 0.013-0.049, P<0.001) as significant predictors of RR (R^2 =0.456, P<0.001). In the WG-LASIK cohort, SE was positively correlated with RR (P<0.01); K2 and anterior corneal astigmatism were positively correlated with both RR (P<0.05) and EOZ eccentricity (P<0.01). Multivariable regression showed SE (β =0.015, 95%CI: 0.007-0.023, P<0.001) and anterior corneal astigmatism (β =0.029, 95%CI: 0.012-0.047, P=0.001) were significant predictors of RR (R^2 =0.121, P<0.001).

- **CONCLUSION:** Preoperative anterior corneal topographic parameters, particularly anterior corneal astigmatism, significantly affect postoperative EOZ morphology in both KLEx and WG-LASIK. Additionally, Km is a predictor of EOZ reduction specifically in KLEx.
- **KEYWORDS:** keratorefractive lenticule extraction; wavefront-guided LASIK; anterior corneal topography; effective optical zone; optical zone reduction ratio

DOI:10.18240/ijo.2025.12.15

Citation: Tsai TH, Hsu JH, Lin ET, Sun CC. Impact of preoperative anterior topographic parameters on effective optical zone after keratorefractive lenticule extraction and wavefront-guided LASIK. *Int J Ophthalmol* 2025;18(12):2331-2338

INTRODUCTION

currently, two popular corneal refractive surgery techniques, keratorefractive lenticule extraction (KLEx) and wavefront-guided laser *in situ* keratomileusis (WG-LASIK), are widely used to safely and effectively correct myopia. Both procedures aim not only to correct refractive errors but also to provide superior visual quality^[1]. The effective optical zone (EOZ), also known as the functional optical zone, is a critical concept in corneal refractive surgery, contributing to the postoperative visual quality. It refers to the corneal area that provides functional, high-quality vision following surgery^[2]. A smaller or decentered EOZ has been

shown to be associated with increased postoperative higherorder aberrations, more frequent night vision disturbances, and reduced contrast sensitivity^[3-10]. Thus, identifying preoperative factors that influence the morphology of the postoperative EOZ is crucial for optimizing patient outcomes.

While several studies have investigated the relationship between preoperative factors such as spherical equivalent (SE), sphere, and cylinder correction with postoperative EOZ^[4,11-14], there was limited research examining the influence of anterior topographic parameters like keratometry and corneal asphericity (Q-value)^[9,13,15-16]. Therefore, the aim of this study is to comprehensively explore the impact of anterior topographic parameters on postoperative EOZ in patients undergoing KLEx and WG-LASIK.

PARTICIPANTS AND METHODS

Ethical Approval The study was approved by the Institutional Review Board of Chang Gung Memorial Hospital (IRB No.202401177B0) and adhered to the principles outlined in the Declaration of Helsinki (2024). As this was a retrospective study that involved the review of existing clinical records and imaging data, the requirement for written informed consent was waived by the IRB. No monetary compensation was provided to participants.

Study Population This study consecutively enrolled patients who underwent KLEx surgeries with small incision lenticule extraction or WG-LASIK for myopia or myopic astigmatism performed by a single experienced refractive surgeon (Sun CC) between 2018 and 2022. Exclusion criteria were: 1) less than one-month postoperative follow-up; 2) incomplete medical records; 3) severe dry eye, glaucoma, ocular inflammation, or retinal diseases; 4) autoimmune disorders; 5) prior ocular surgeries. To examine the impact of baseline SE, anterior keratometry, and Q-value on postoperative outcomes, eyes were stratified by these preoperative variables at the cohort-specific median (The median SE, K1, K2, Km and Q-value were -6, 42.65, 44.2, 43.45 D and -0.35 in the KLEx cohort, while the median values of SE, K1, K2, Km, and Q-value in the WG-LASIK cohort were -6.5, 42.6, 44.3, 43.3 D and -0.32, respectively).

Ophthalmologic Examinations and EOZ Measurement Comprehensive ophthalmologic evaluations were conducted preoperatively and at one month postoperatively. These included a thorough history taking, manifest refraction, non-contact intraocular pressure measurement, slit-lamp examination, fundoscopic examination, and corneal tomography using the Pentacam HR (Oculus, Wetzlar, Germany). Anterior topographic parameters-flat keratometry (K1), steep keratometry (K2), and mean keratometry (Km)-were recorded within a 3 mm zone centered on the corneal vertex, along with the Q-value for corneal asphericity,

measured within an 8 mm zone, all using the Pentacam.

EOZ at one-month postoperatively was derived from the tangential curvature difference map (TCDM) of the Pentacam and was defined as the zero-curvature difference contour line on the TCDM. Three investigators (Hsu JH, Tsai TH, and Lin ET) independently assessed EOZ size, decentration, and eccentricity using Image J software (version 1.54; National Institutes of Health, Bethesda, MD, USA). First, a color threshold was applied to highlight the EOZ, and the images were then converted to binary format. Using the relevant Image J tools, several EOZ parameters were extracted. Because the sizes of the planned optical zone (POZ) were not consistent, we expressed postoperative EOZ size as the optical-zone-reduction ratio (RR), calculated as EOZ/POZ×100%. For decentration, the absolute value of decentration (mm), as well as the absolute decentration in both x- and y-axes (mm), was calculated, with the EOZ centroid being compared to the corneal vertex from Pentacam data. Eccentricity was derived from the ratio of the major axis to the minor axis, indicating how much the EOZ deviated from a circular EOZ.

Surgical Technique All KLEx surgeries were performed using the VisuMax 500kHz laser system (Carl Zeiss Meditec AG, Germany) with a pulse energy of 140 nJ. The cap diameter ranged from 7.0 to 8.0 mm, with a cap thickness of 100 to 120 µm, and a POZ of 6.0 to 7.0 mm. A precise 3.0 mm incision was made at the 11 o'clock position. Preoperative triple marking centration at 0°, 180° and 270° was done in all KLEx cases to mitigate the effect of cyclotorsion. For WG-LASIK, preoperative ablation calculations were performed using a Hartmann-Shack aberrometer (iDesign; J&J Vision, Santa Ana, CA, USA), and flaps were created using a 60-kHz intralase femtosecond laser (iFS, J&J Vision, Santa Ana, CA, USA). The flaps had a superior hinge, with a diameter of 9.0 mm and thickness between 100 and 120 µm. After flap creation, the ablation was carried out using the Star S4IR excimer laser (J&J Vision, Santa Ana, CA, USA) with a POZ of 6.0 to 7.5 mm and an ablation zone of 8.0 mm. X-Y-Z tracking and iris registration for torsional tracking were performed in all cases. Postoperatively, patients were prescribed a two-week course of 1% prednisolone acetate ophthalmic suspension (Prednicone; Winston, Taiwan, China) and 0.5% levofloxacin ophthalmic solution (Cravit; Santen, Japan).

Statistical Analysis The Kolmogorov-Smirnov test was used to assess data distribution, revealing a non-parametric distribution on both surgery cohorts. Continuous variables were expressed as mean \pm standard deviation. Differences in continuous variables between the high- and low-SE subgroups, as well as between the subgroups stratified by anterior topographic parameters, were compared with the Mann-Whitney U tests. Spearman's correlation analysis

Table 1 Preoperative patient characteristics subcategorized by anterior topographic parameters

Parameters	n	Age, y	SE, D	Pupil size, mm	Angle kappa, mm	POZ, mm
KLEx						
Overall	171	30.65±5.67	-6.33±2.24	6.64±0.67	0.20±0.11	6.56±0.29
K1, D						
>42.65 D	85	30.84±5.88	-6.33±2.16	6.61±0.64	0.19±0.11	6.56±0.32
≤42.65 D	86	30.48±5.52	-6.33±2.35	6.68±0.72	0.20±0.11	6.56±0.27
Р		0.691	0.695	0.471	0.501	0.564
K2, D						
>44.2 D	87	30.66±5.72	-6.31±2.20	6.60±0.61	0.19±0.11	6.55±0.31
≤44.2 D	84	30.66±5.69	-6.35±2.32	6.70±0.74	0.21±0.11	6.57±0.27
Р		0.889	0.806	0.446	0.167	0.975
Km, D						
>43.45 D	85	30.92±5.87	-6.21±2.12	6.61±0.63	0.19±0.11	6.57±0.30
≤43.45 D	86	30.40±5.52	-6.44±2.39	6.68±0.72	0.20±0.11	6.55±0.28
Р		0.531	0.811	0.562	0.524	0.512
Q value						
>-0.35	95	31.54±6.26	-6.41±2.32	6.58±0.73	0.19±0.10	6.56±0.26
≤-0.35	76	29.55±4.69	-6.23±2.17	6.73±0.60	0.21±0.12	6.56±0.33
Р		0.07	0.596	0.108	0.484	0.846
WG-LASIK						
Overall	139	29.06±5.94	-6.34±1.65	6.63±0.65	0.20±0.10	6.87±0.23
K1, D						
>42.6 D	71	30.82±6.62	-6.29±1.61	6.64±0.65	0.20±0.11	6.88±0.21
≤42.6 D	68	27.22±4.55	-6.40±1.71	6.62±0.66	0.21±0.10	6.86±0.25
Ρ		0.002	0.683	0.74	0.415	0.931
K2, D						
>44.3 D	70	30.49±6.66	-6.50±1.60	6.64±0.68	0.20±0.11	6.86±0.22
≤44.3 D	69	27.61±4.78	-6.18±1.71	6.63±0.63	0.20±0.09	6.88±0.24
Ρ		0.028	0.211	0.667	0.923	0.392
Km, D						
>43.3 D	71	30.52±6.74	-6.30±1.64	6.64±0.65	0.20±0.11	6.88±0.22
≤43.3 D	68	27.53±4.60	-6.39±1.68	6.63±0.66	0.21±0.09	6.87±0.25
Ρ		0.022	0.763	0.765	0.766	0.916
Q value						
>-0.32	73	29.66±5.15	-6.35±1.60	6.65±0.65	0.20±0.10	6.88±0.22
≤-0.32	66	28.39±6.72	-6.34±1.73	6.61±0.67	0.21±0.11	6.87±0.25
Р		0.116	0.931	0.667	0.594	0.998

Continuous variables are expressed as mean±standard deviation. KLEx: Keratorefractive lenticule extraction; WG-LASIK: Wavefront-guided laser *in situ* keratomileusis; SE: Spherical equivalent; K1: Flat keratometry; K2: Steep keratometry; Km: Mean keratometry; POZ: Planned optical zone.

was conducted to explore the relationships between SE, anterior topographic parameters (K1, K2, Km, anterior corneal astigmatism, Q value), and EOZ, with correlation coefficient $(r) \ge 0.2$ regarded as meaningful correlation. Linear regression analyses were conducted with postoperative EOZ parameters as dependent variables, while age and any covariate showing an absolute correlation coefficient of ≥ 0.2 served as independent predictors. P < 0.05 was considered statistically significant. The minimum sample size was calculated from the planned multivariable regression of preoperative predictors against EOZ outcomes. For a regression model designed to

detect an $R^2 \ge 0.10$ at a significance level of 0.05 and a power of 0.80, a minimum sample size of 75 eyes was required for each procedure group. All statistical analyses were performed with SPSS version 29.0.2.0.

RESULTS

Preoperative Patient Characteristics A total of 310 eyes were included in our study (KLEx: 171 eyes from 88 patients; WG-LASIK: 139 eyes from 82 patients). Baseline patient characteristics were demonstrated in Table 1. The average age was 30.65±5.67y in the KLEx cohort and 29.06±5.94y in the WG-LASIK cohort. For KLEx patients, the average

Table 2 Preoperative patient characteristics subcategorized by spherical equivalent

Parameters	n	Age, y	Pupil size, mm	K1, D	K2, D	Km, D	Q value	Angle kappa, mm	POZ, mm
KLEx									
Overall	171	30.65±5.67	6.64±0.67	42.78±1.49	44.24±1.60	43.50±1.51	-0.34±0.11	0.20±0.11	6.56±0.29
SE, D									
>-6 D	81	29.70±5.17	6.58±0.63	42.74±1.47	44.24±1.62	43.49±1.51	-0.35±0.10	0.19±0.12	6.73±0.17
≤-6 D	90	31.51±6.02	6.70±0.72	42.81±1.53	44.25±1.62	43.51±1.53	-0.34±0.12	0.20±0.10	6.41±0.29
Р		0.069	0.386	0.854	0.897	0.995	0.367	0.225	<0.001
WG-LASIK									
Overall	139	29.06±5.94	6.63±0.65	42.57±1.45	44.37±1.61	43.44±1.49	-0.33±0.11	0.20±0.10	6.87±0.23
SE, D									
>-6.5 D	68	29.29±5.70	6.64±0.65	42.70±1.46	44.35±1.68	43.51±1.53	-0.33±0.10	0.19±0.10	7.02±0.14
≤-6.5 D	71	28.83±6.23	6.63±0.66	42.44±1.46	44.38±1.57	43.38±1.47	-0.33±0.12	0.22±0.10	6.73±0.22
Р		0.67	0.955	0.479	0.657	0.929	0.963	0.092	<0.001

Continuous variables are expressed as mean±standard deviation. KLEx: Keratorefractive lenticule extraction; WG-LASIK: Wavefront-guided laser *in situ* keratomileusis; SE: Spherical equivalent; K1: Flat keratometry; K2: Steep keratometry; Km: Mean keratometry; POZ: Planned optical zone.

SE, K1, K2, Km, Q-value, and angle kappa were -6.33 \pm 2.24, 42.78 \pm 1.49, 44.24 \pm 1.60, 43.50 \pm 1.51 D, -0.34 \pm 0.11, and 0.20 \pm 0.11 mm, respectively. In the WG-LASIK cohort, these values were -6.34 \pm 1.65, 42.57 \pm 1.45, 44.37 \pm 1.61, 43.44 \pm 1.49 D, -0.33 \pm 1.11, and 0.20 \pm 0.10 mm, respectively.

Across both surgical cohorts, eyes in the higher myopia (more-negative SE) subgroup were assigned a significantly smaller POZ (P<0.001). Within the WG-LASIK cohort, patients with steeper corneas (higher K1, K2, and Km) were older (P=0.002, 0.028, and 0.022, respectively). No other baseline demographic differences were observed (Table 2).

EOZ Parameters One Month after KLEx and WG-LASIK Table 3 summarizes the comparisons of EOZ parameters between subgroups. Among KLEx patients, the RR was significantly lower in those with a more-negative SE compared to those with SE>-6 D, with values of $66.6\%\pm7.2\%$ and $75.8\%\pm9.9\%$, respectively (P<0.001). Similarly, patients with lower K1 (K1 \leq 42.65 D) had a lower RR than those with higher K1 (K1>42.65 D), showing values of $69.4\%\pm9\%$ and $72.5\%\pm10.3\%$, respectively (P=0.032). For K2, a lower RR was observed in patients with lower K2 (K2 \leq 44.2 D) compared to those with higher K2 (K2>44.2 D), with respective values of $68.9\%\pm9.2\%$ and $73.0\%\pm9.9\%$ (P=0.005). Additionally, lower Km (Km \leq 43.45 D) was associated with a significantly lower RR than higher Km (Km \geq 43.45 D), with values of $69.1\%\pm9.0\%$ and $72.8\%\pm10.2\%$, respectively (P=0.012).

In the WG-LASIK cohort, patients with SE \leq -6.5 D also had a significantly lower RR compared to those with SE \geq 6.5 D, with values of 70.9 \pm 7.7% and 73.9 \pm 8.5%, respectively (P=0.027). Similarly, patients with lower K2 (K2 \leq 44.3 D) exhibited a lower RR compared to those with higher K2 (K2 \geq 44.3 D), with respective values of 70.8% \pm 8.1% and 73.9% \pm 8.1% (P=0.007). Patients with lower K2 (K2 \leq 44.3 D) exhibited less eccentricity compared to those with higher K2 (K2 \geq 44.3 D),

with respective values of 1.12 ± 0.09 and 1.15 ± 0.07 (P=0.018).

Correlation and Linear Regression Between SE, Anterior Topographic Parameters, and EOZ Correlation analysis demonstrated significant positive correlations with $r \ge 0.2$ between SE, K2, Km, anterior corneal astigmatism (K2-K1), and RR in KLEx patients (P < 0.01). A similar positive association was found between K2 and eccentricity (P < 0.01). In WG-LASIK patients, significant positive correlations with $r \ge 0.2$ were observed between SE, K2, anterior corneal astigmatism, and RR (P < 0.05), with comparable correlations between K2, anterior corneal astigmatism, and eccentricity (P < 0.01). Detailed results are presented in Table 4.

Multivariable regression analysis as shown in Table 5 included significant variables with $r \ge 0.2$ from the correlation analysis. In the KLEx cohort, SE (β =0.027, 95%CI: 0.022-0.032, P<0.001), anterior corneal astigmatism (β =0.031, 95%CI: 0.013-0.049, P<0.001), and Km (β =0.009, 95%CI: 0.002-0.016, P=0.014) emerged as significant predictors of RR (R^2 =0.456, P<0.001). Similarly, in the WG-LASIK cohort, SE (β =0.015, 95%CI: 0.007-0.023, P<0.001) and anterior corneal astigmatism (β =0.029, 95%CI: 0.012-0.047, P=0.001) were significant predictors of RR (R^2 =0.121, P<0.001). Additionally, anterior corneal astigmatism (β =0.064, 95%CI: 0.050-0.079, P<0.001) was a significant predictor of eccentricity in WG-LASIK patients (R^2 =0.355, P<0.001).

DISCUSSION

In this study, we identified the impact of preoperative SE and anterior topographic parameters on EOZ morphology following KLEx and WG-LASIK procedures. In the KLEx cohort, preoperative SE, Km, and anterior corneal astigmatism were predictive of RR. In the WG-LASIK cohort, only SE and anterior corneal astigmatism were predictive of RR. Additionally, we observed that anterior corneal astigmatism was predictive of eccentricity in WG-LASIK patients. This

Table 3 EOZ parameters at one-month postoperatively

Parameters	n	RR, %	Decentration, mm	Absolute X-decentration, mm	Absolute Y-decentration, mm	Eccentricity
KLEx						
Overall	171	71.0±9.7	0.32±0.17	0.17±0.12	0.23±0.18	1.11±0.07
SE, D						
>-6	81	75.8±9.9	0.31±0.16	0.17±0.11	0.23±0.18	1.11±0.08
≤-6	90	66.6±7.2	0.32±0.18	0.17±0.13	0.24±0.18	1.10±0.08
Р		<0.001	0.909	0.777	0.697	0.1
K1, D						
>42.65	85	72.5±10.3	0.33±0.18	0.16±0.12	0.26±0.20	1.11±0.07
≤42.65	86	69.4±9.0	0.3±0.15	0.18±0.12	0.21±0.15	1.10±0.08
Р		0.032	0.28	0.195	0.139	0.472
K2, D						
>44.2	87	73.0±9.9	0.32±0.18	0.15±0.11	0.24±0.20	1.11±0.07
≤44.2	84	68.9±9.2	0.31±0.15	0.18±0.13	0.22±0.16	1.10±0.08
P		0.005	0.965	0.117	0.715	0.086
Km, D						
>43.45	85	72.8±10.2	0.32±0.18	0.15±0.11	0.25±0.20	1.11±0.07
≤43.45	86	69.1±9.0	0.31±0.16	0.19±0.12	0.21±0.16	1.10±0.08
Р		0.012	0.711	0.052	0.291	0.274
Q-value						
>-0.35	95	70.8±9.6	0.32±0.16	0.16±0.11	0.24±0.18	1.11±0.08
≤-0.35	76	71.2±10.0	0.31±0.18	0.17±0.12	0.22±0.18	1.10±0.07
Р		0.858	0.567	0.572	0.274	0.574
WG-LASIK						
Overall	139	72.4±8.2	0.39±0.22	0.25±0.17	0.25±0.22	1.14±0.08
SE, D	100	72112012	0.03_0	0.2020.27	0.2020122	111 110100
>-6.5	68	73.9±8.5	0.42±0.22	0.26±0.17	0.27±0.23	1.13±0.09
≤-6.5	71	70.9±7.7	0.37±0.22	0.24±0.18	0.22±0.22	1.14±0.08
P		0.027	0.09	0.289	0.144	0.807
K1, D		0.027	0.03	0.203	0.111	0.007
>42.6	71	72.9±8.1	0.41±0.23	0.25±0.18	0.28±0.23	1.13±0.07
≤42.6	68	71.8±8.3	0.37±0.21	0.25±0.17	0.21±0.21	1.14±0.09
242.0 P	00	0.294	0.266	0.878	0.101	0.876
, K2, D		0.254	0.200	0.070	0.101	0.070
>44.3	70	73.9±8.1	0.40±0.23	0.26±0.18	0.25±0.22	1.15±0.07
>44.3 ≤44.3	69	70.8±8.1	0.38±0.22	0.24±0.17	0.24±0.22	1.13±0.07 1.12±0.09
244.5 P	03	0.007	0.61	0.504	0.537	0.018
Km, D		0.007	0.01	0.304	0.337	0.018
	71	72 2±0 1	0 41+0 22	0.25±0.19	0.27±0.22	1 12±0 07
>43.3 ≤43.3	71 68	73.2±8.1 71.5±8.3	0.41±0.23 0.37±0.21	0.25±0.18 0.25±0.17	0.27±0.23 0.22±0.21	1.13±0.07 1.14±0.09
≤43.3 P	08					
		0.118	0.399	0.861	0.141	0.943
Q-value	73	71 710 2	0.41+0.22	0.2640.40	0.2640.24	1 12:0 07
>-0.32	73 66	71.7±8.2	0.41±0.23	0.26±0.18	0.26±0.24	1.13±0.07
≤-0.32	66	73.1±8.3	0.37±0.21	0.23±0.17	0.23±0.21	1.14±0.09
Р		0.271	0.229	0.186	0.649	0.692

Continuous variables are expressed as mean±standard deviation. KLEx: Keratorefractive lenticule extraction; WG-LASIK: Wavefront-guided laser *in situ* keratomileusis; SE: Spherical equivalent; K1: Flat keratometry; K2: Steep keratometry; Km: Mean keratometry; RR (%): Optical-zone-reduction ratio (EOZ/POZ); EOZ: Effective optical zone; POZ: Planned optical zone.

is the first study to comprehensively examine the impact of baseline anterior topographic parameters in both surgeries. Preoperatively, there were no significant differences in age, pupil size or angle kappa between subgroups with high and low SE or anterior topographic parameters in the KLEx cohort. However, in the WG-LASIK cohort, older age was

Table 4 Correlation analysis of preoperative SE and anterior topographic parameters with EOZ

Parameters	SE	K1	K2	Km	K2-K1	Q value
KLEx						
RR	0.62 ^b	0.19ª	0.27^{b}	0.24^{b}	0.29 ^b	0.04
Decentration	0.01	0.08	0.04	0.05	-0.10	0.06
Absolute X-decentration	-0.04	-0.15	-0.15ª	-0.16 ^a	-0.03	-0.04
Absolute Y-decentration	-0.01	0.13	0.10	0.11	-0.08	0.11
Eccentricity	0.14	0.04	-0.17ª	0.11	0.39 ^b	0.02
WG-LAIK						
RR	0.22^{b}	0.10	0.21 ^a	0.16	0.20^{a}	-0.05
Decentration	0.17 ^a	0.10	0.08	0.09	-0.04	0.06
Absolute X-decentration	0.12	-0.02	0.02	0.01	0.09	0.04
Absolute Y-decentration	0.13	0.19^{a}	0.12	0.16	-0.08	0.04
Eccentricity	-0.02	0.01	0.30^{b}	0.16	0.64 ^b	-0.06

^aCorrelation is significant at the 0.05 level (2-tailed); ^bCorrelation is significant at the 0.01 level (2-tailed). KLEx: Keratorefractive lenticule extraction; WG-LASIK: Wavefront-guided laser *in situ* keratomileusis; SE: Spherical equivalent; K1: Flat keratometry; K2: Steep keratometry; Km: Mean keratometry; RR (%): Optical-zone-reduction ratio (EOZ/POZ); EOZ: Effective optical zone; POZ: Planned optical zone.

Table 5 Multivariable linear regression of SE and anterior topographic parameters as predictors of EOZ

Variables	Unstandardized <i>B</i>	95%CI	Р	Adjusted R ²	Model <i>P</i> value
KLEx					
RR					
SE	0.027	0.022; 0.032	<0.001	0.456	< 0.001
K2-K1	0.031	0.013; 0.049	< 0.001		
Km	0.009	0.002; 0.016	0.014		
WG-LASIK					
RR					
SE	0.015	0.007; 0.023	<0.001	0.121	<0.001
K2-K1	0.029	0.012; 0.047	0.001		
Eccentricity					
K2-K1	0.064	0.050; 0.079	<0.001	0.355	<0.001

KLEx: Keratorefractive lenticule extraction; WG-LASIK: Wavefront-guided laser *in situ* keratomileusis; SE: Spherical equivalent; K1: Flat keratometry; K2: Steep keratometry; Km: Mean keratometry; RR (%): Optical-zone-reduction ratio (EOZ/POZ); EOZ: Effective optical zone; POZ: Planned optical zone; CI: Confidence interval.

significantly associated with higher K1, K2, and Km values. This finding is consistent with previous reports in the general population^[17-18]. Nonetheless, the age difference across these subgroups was approximately 3y, which may not be clinically significant. In both cohorts, the POZ was significantly smaller in patients with higher refractive errors, which aligns with the Munnerlyn *et al*^[19] formula for a fixed ablation depth. Our cohort reflects real-world data, as POZ size was limited in high myopic patients to preserve residual corneal thickness. To address this variability in the patient demographics, we evaluated postoperative changes in optical zone size as a

percentage (RR, %), eliminating the potential bias caused by differences in POZ.

As a result, postoperative RR was lower in subgroups with a more-negative preoperative SE in both cohorts. This is consistent with previous findings that higher myopic corrections are associated with greater postoperative optical zone reduction following both KLEx^[12-14,20] and LASIK^[3-4]. These results may be attributed to increased postoperative wound healing reactions caused by the higher laser energy required for correcting high myopia^[21]. Consequently, patients with high myopia may experience both a smaller POZ and greater postoperative optical zone reduction. Surgeons should exercise caution when planning such procedures, as a smaller EOZ can negatively impact visual quality^[10,22-24].

In the current study, we observed the impact of preoperative anterior corneal contour on postoperative EOZ reduction after two refractive procedures. In KLEx cohort, we found that patients with flatter K1, K2, and Km exhibited significantly lower RR. This is consistent with other studies that also reported a positive correlation between the anterior corneal curvature and postoperative EOZ^[13,15]. Chan et al^[9] suggested that mismatched contact surfaces between the patient's cornea and the contact cone may affect the EOZ after KLEx surgery. Wang and Xia^[15] further proposed that postoperative EOZ might be influenced by the discrepancy between the patient's steep keratometry and the curvature of the contact cone during the KLEx procedure. Additionally, we found that other than anterior keratometry, anterior corneal astigmatism, was positively correlated with RR, in line with previous studies^[7,20,25]. Ding et al^[7] reported that larger corneal volume reduction was found in lower astigmatism patients, which could result in greater corneal biomechanical change and remodeling in the peripheral corneal stroma, leading to a smaller EOZ.

In the WG-LASIK cohort, we also found a positive association between anterior corneal astigmatism and RR. This is consistent with previous findings that higher corneal cylinder correction is associated with a larger and more elliptical postoperative EOZ^[14]. Huang et al^[26] similarly proposed that, as with the KLEx procedure, higher astigmatism is linked to a larger EOZ due to better preservation of corneal contour And since excimer laser ablation in WG-LASIK does not require a patient interface intraoperatively, there is no interaction between the cone and the anterior corneal surface, which could otherwise affect the EOZ. Therefore, we propose that corneal astigmatism, rather than anterior keratometry values, is the key variable influencing postoperative EOZ reduction in WG-LASIK. Nonetheless, a significantly lower RR was observed only in the flatter K2 subgroup, but not in the K1 or Km subgroups, unlike in the KLEx cohort. We hypothesize that the increase in anterior corneal astigmatism may be partially driven by the increase in K2, which explains the similar positive correlations between K2 and RR.

Previous studies have shown that a greater change in postoperative Q-value is associated with a smaller EOZ in patients undergoing both KLEx and LASIK[7,13,26-27]. The KLEx procedure has been observed to induce less change in Q-value compared to LASIK, which may contribute to a larger postoperative EOZ area^[16,27]. Our study also observed similar trends. RR was negatively correlated with both postoperative Q-value (KLEx: r=-0.693, P<0.001; WG-LASIK: r=-0.360, P<0.001) and the change between preoperative and postoperative O-value (KLEx: r=-0.721, P<0.001; WG-LASIK: r=-0.338, P<0.001). However, while previous studies primarily investigated changes in O-value or postoperative Q-value as predictors of EOZ^[7,13,26-27], our analysis focused on whether preoperative Q-value could predict postoperative EOZ reduction. We found no significant difference in RR when stratified by preoperative corneal asphericity, nor was there a significant correlation between preoperative Q-value and RR. One possible explanation is that early epithelial and stromal remodeling likely mediates much of the observed EOZ change^[27], weakening the contribution of initial O value. These findings suggest that preoperative corneal asphericity alone may not be an effective predictor of postoperative EOZ reduction, regardless of the surgical technique used. Additionally, we found that EOZ eccentricity after both procedures may be influenced by anterior corneal parameters, particularly corneal astigmatism. This could be due to the shape of the optical zone in astigmatism correction, which tends to be more elliptical after refractive surgery^[14]. Deviations from a circular optical zone may ultimately contribute to increased eccentricity.

To better identify preoperative predictors of postoperative EOZ parameters, we performed multivariable regression analyses. In both cohorts, the magnitude of refractive errors had the largest impact on EOZ reductions. In the KLEx cohort, anterior corneal astigmatism and mean keratometry were also significant predictors of postoperative EOZ change, reaffirming that EOZ size in KLEx can be affected by both the mismatched contact surface and the degree of astigmatism correction. In the WG-LASIK cohort, only anterior corneal astigmatism, rather than other corneal curvature parameters, significantly predicted EOZ change. This finding indicated that anterior corneal astigmatism was a primary factor influencing EOZ reduction. Similarly, anterior corneal astigmatism was the sole significant predictor of EOZ eccentricity after WG-LASIK. A study published by Song et al^[28] as well compared EOZ behavior after SMILE and FS-LASIK in multivariable models. They showed that postoperative reductions in corneal asphericity and increases in spherical aberration were the principal drivers of EOZ shrinkage^[28]. Our study extends these observations by focusing exclusively on preoperative predictors. Because these parameters are known at the initial assessment, they enable surgeons to enlarge the POZ or adjust centration before performing surgery, an advantage not afforded by models that depend on postoperative metrics. We did not analyze baseline spherical aberration, but, as with Q-value, its change rather than its preoperative magnitude is likely more informative for forecasting EOZ morphology.

Taken together, our findings suggest a practical rule: when a KLEx candidate has a steep Km-or when either procedure is planned for an eye with a very negative SE and low astigmatism—surgeons should program the POZ slightly larger than the standard nomogram, provided residual stromal thickness is adequate, to offset predictable postoperative shrinkage of optical zone and preserve visual quality. This recommendation should, however, be interpreted in light of our study's limitations. First, follow up was restricted to one month. EOZ is a dynamic metric that continues to remodel after surgery: epithelial remodeling typically stabilizes three to six months postoperatively^[29]. Nevertheless, Liu et al^[25] showed that EOZ changes beyond the first postoperative month are small compared with the pronounced early shift, suggesting that our one-month data capture the majority of clinically relevant remodeling. Further studies are needed to assess longer-term effects. Second, as a retrospective study, we did not match POZ across varying magnitudes of refractive correction. However, we aimed to present realworld data, recognizing that POZ design is often constrained by the relationship between refractive correction and corneal thickness. To minimize the impact of POZ variability, we analyzed EOZ change as a percentage of the POZ.

In conclusion, factors beyond SE can help predict EOZ morphology. In KLEx, a steeper mean keratometry and greater anterior corneal astigmatism are linked to a larger postoperative EOZ, whereas in WG-LASIK, anterior corneal astigmatism shows a positive association with both EOZ size and eccentricity.

ACKNOWLEDGEMENTS

Authors' Contributions: Tsai TH: Conception and design of the research, analysis and interpretation of data, and draft of the manuscript. Hsu JH: Acquisition, analysis and interpretation of data, and draft of the manuscript. Lin ET: Acquisition, analysis and interpretation of data. Sun CC: Conception and design of the research, and final approval to the version to be published.

Conflicts of Interest: Tsai TH, None; Hsu JH, None; Lin ET, None; Sun CC, None.

REFERENCES

1 Tian H, Gao WJ, Xu CH, et al. Clinical outcomes and higher order aberrations of wavefront-guided LASIK versus SMILE for correction

- of myopia: a systemic review and meta-analysis. *Acta Ophthalmol* 2023:101(6):606-618.
- 2 Tabernero J, Klyce SD, Sarver EJ, et al. Functional optical zone of the cornea. *Invest Ophthalmol Vis Sci* 2007;48(3):1053.
- 3 Holladay JT, Janes JA. Topographic changes in corneal asphericity and effective optical zone after laser *in situ* keratomileusis. *J Cataract Refract Surg* 2002;28(6):942-947.
- 4 Nepomuceno RL, Boxer Wachler BS, Scruggs R. Functional optical zone after myopic LASIK as a function of ablation diameter. *J Cataract Refract Surg* 2005;31(2):379-384.
- 5 He SY, Luo YQ, Chen P, et al. Prospective, randomized, contralateral eye comparison of functional optical zone, and visual quality after SMILE and FS-LASIK for high myopia. Transl Vis Sci Technol 2022;11(2):13.
- 6 Moshirfar M, Herron MS, Cha DS, et al. Comparing effective optical zones after myopic ablation between LASIK, PRK, and SMILE with correlation to higher order aberrations. J Refract Surg 2023;39(11): 741-750.
- 7 Ding X, Fu D, Wang L, *et al.* Functional optical zone and visual quality after small-incision lenticule extraction for high myopic astigmatism. *Ophthalmol Ther* 2021;10(2):273-288.
- 8 Li MY, Zhao J, Miao HM, et al. Mild decentration measured by a Scheimpflug camera and its impact on visual quality following SMILE in the early learning curve. *Invest Ophthalmol Vis Sci* 2014;55(6): 3886-3892.
- 9 Chan TCY, Wan KH, Kang DSY, et al. Effect of corneal curvature on optical zone decentration and its impact on astigmatism and higherorder aberrations in SMILE and LASIK. Graefes Arch Clin Exp Ophthalmol 2019;257(1):233-240.
- 10 Zhou C, Li Y, Wang YH, et al. Comparison of visual quality after SMILE correction of low-to-moderate myopia in different optical zones. Int Ophthalmol 2023;43(10):3623-3632.
- 11 Boxer Wachler BS, Huynh VN, El-Shiaty AF, *et al.* Evaluation of corneal functional optical zone after laser *in situ* keratomileusis. *J Cataract Refract Surg* 2002;28(6):948-953.
- 12 Fu D, Wang L, Zhou XT, et al. Functional optical zone after small-incision lenticule extraction as stratified by attempted correction and optical zone. Cornea 2018;37(9):1110-1117.
- 13 Fu YY, Yin YW, Zhao Y, et al. Changes of the effective optical zone after small-incision lenticule extraction and a correlation analysis. Lasers Med Sci 2022;38(1):14.
- 14 Moshirfar M, Herron MS, Cha DS, et al. Correlational analysis of the effective optical zone with myopia, myopic astigmatism, and spherical equivalent in LASIK, PRK, and SMILE. Clin Ophthalmol 2024;18:377-392.
- 15 Wang XQ, Xia LK. Evaluation of the effects of myopic astigmatism

- correction and anterior corneal curvature on functional optical zone after SMILE. *J Refract Surg* 2023;39(2):135-141.
- 16 Ying JL, Zhang J, Cai JQ, et al. Comparative change in anterior corneal asphericity after FS-LASIK and SMILE. J Refract Surg 2021;37(3):158-165.
- 17 Moghadas Sharif N, Yazdani N, Shahkarami L, et al. Analysis of age, gender, and refractive error-related changes of the anterior corneal surface parameters using oculus keratograph topography. J Curr Ophthalmol 2020;32(3):263-267.
- 18 Hashemi H, Asgari S, Emamian MH, et al. Age-related changes in corneal curvature and shape: the shahroud eye cohort study. Cornea 2015;34(11):1456-1458.
- 19 Munnerlyn CR, Koons SJ, Marshall J. Photorefractive keratectomy: a technique for laser refractive surgery. J Cataract Refract Surg 1988;14(1):46-52.
- 20 Huang YY, Ding X, Han T, *et al.* Effective optical zone following small incision lenticule extraction for myopia calculated with two novel methods. *J Refract Surg* 2022;38(7):414-421.
- 21 Huang YY, Zhan BY, Han T, *et al.* Effective optical zone following small incision lenticule extraction: a review. *Graefes Arch Clin Exp Ophthalmol* 2024;262(6):1657-1665.
- 22 Hammond SD Jr, Puri AK, Ambati BK. Quality of vision and patient satisfaction after LASIK. *Curr Opin Ophthalmol* 2004;15(4):328-332.
- 23 Alarcón A, Rubiño M, Pééérez-Ocón F, et al. Theoretical analysis of the effect of pupil size, initial myopic level, and optical zone on quality of vision after corneal refractive surgery. J Refract Surg 2012;28(12):901-906.
- 24 Fan-Paul NI, Li J, Miller JS, *et al.* Night vision disturbances after corneal refractive surgery. *Surv Ophthalmol* 2002;47(6):533-546.
- 25 Liu ST, Gu XJ, Zhang XX, et al. Achieved and functional optical zone in myopic eyes with high astigmatism after small incision lenticule extraction. J Refract Surg 2022;38(4):243-249.
- 26 Huang YY, Han T, Wang YL, et al. Comparison of long-term changes in the effective optical zone following SMILE and FS-LASIK for moderate and high myopia. BMC Ophthalmol 2024;24(1):388.
- 27 Hou J, Wang Y, Lei YL, et al. Comparison of effective optical zone after small-incision lenticule extraction and femtosecond laser-assisted laser in situ keratomileusis for myopia. J Cataract Refract Surg 2018;44(10):1179-1185.
- 28 Song Y-W, Feng Y, Qu M, *et al.* Comparative study of functional optical zone: small incision lenticule extraction versus femtosecond laser assisted excimer laser keratomileusis. *Int J Ophthalmol* 2023;16(2):238-244.
- 29 Zhu MM, Xin Y, Vinciguerra R, et al. Corneal epithelial remodeling in a 6-month follow-up period in myopic corneal refractive surgeries. J Refract Surg 2023;39(3):187-196.