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Abstract 
● The cornea is a soft tissue located at the front of the eye 
with the principal function of transmitting and refracting 
light rays to precisely sense visual information. Corneal 
shape, refraction, and stromal stiffness are to a large 
part determined by corneal fibrils, the arrangements 
of which define the corneal cells and their functional 
behaviour. However, the modality and alignment of native 
corneal collagen lamellae are altered in various corneal 
pathological states such as infection, injury, keratoconus, 
corneal scar formation, and keratoprosthesis. Furthermore, 
corneal recuperation after corneal pathological change is 
dependent on the balance of corneal collagen degradation 
and contraction. A thorough understanding of the 
characteristics of corneal collagen is thus necessary to 
develop viable therapies using the outcome of strategies 
using engineered corneas. In this review, we discuss 
the composition and distribution of corneal collagens as 
well as their degradation and contraction, and address 
the current status of corneal tissue engineering and the 
progress of corneal cross-linking. 
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INTRODUCTION

T he cornea is a soft tissue at the front of the eye that has 
the principal function of transmitting and refracting 

light rays[1]. The cornea represents approximately 70% of 

the total refractive power of the eye[2], and its transparency is 
essential for visual perception[3]. Accordingly, corneal disease 
or injury results in the loss of vision, which impacts millions 
of patients. In particular, the cornea constitutes a connective 
tissue comprising cells and stromal extracellular matrix (ECM) 
that relies on the synergistic cooperation of many different 
components of the ECM to precisely transmit and refract visual 
information. In turn, the ECM consists of organized lamellae 
composed of tightly distributed fibrils[4]. The regular packing 
of these small diameter collagen fibrils with a highly ordered 
hierarchical organisation leads to the maintenance of corneal 
shape and curvature[5]. Notably, an alternative conformation 
of the collagen fibrils caused by damage has been shown to 
result in altered corneal transparency and physical properties[6]. 
Therefore, a goal of this review was to examine the formation 
of the corneal collagen matrix. In addition, at the present time, 
no clear guidelines are available for examining the status or 
role of corneal fibrils in the diagnosis of corneal pathologies. 
Accordingly, we also reviewed the pathophysiologic functions 
of corneal fibrils to provide a better understanding of their 
possible roles as a contributing factor and/or biomarker for 
corneal matrix pathologies.
COMPOSITION OF CORNEAL COLLAGEN FIBRILS
Corneal collagen fibrils serve as the basal component of the 
corneal matrix and play a role in the morphology and pathology 
of corneal disease. In turn, cellular interactions with the 
ECM mediate biological processes including developmental 
morphogenesis and wound healing. As cells reside within the 
three-dimensional (3-D) ECM in vivo, matrix structure and 
dimensionality have been shown to impact cell morphology, 
protein organization, and mechanical behavior[7]. Organization 
of the corneal stroma matrix involves molecules such as type 
V collagen, fibril-associated collagens with interrupted triple 
helixes, and small leucine-rich proteoglycans[2]. Fibril-forming 
collagens constitute the predominant tensile load-bearing 
proteins in the corneal stroma and consist of self-assembling 
triple helical molecules that incorporate electron-dense 
particles and proteoglycans[8]. Fibrillar collagen fibrils are well 
organized and are produced to fill structures, adapting to their 
peripheral environment.
Cell-matrix interactions can help to modulate ECM remodeling 
to produce matrix architectures and maintain 3-D structures. 
The metabolism of collagen monomers maintains the balance[9].



804

In addition, the nonlinear mechanical behavior of the cornea is 
synchronized with the crimping morphology of collagen fibrils. 
Conversely, the aberrant microstructure of collagen fibrils has 
been shown to result in pathologic corneal transformations 
such as ectasia after laser-assisted in situ keratomileusis[10]. 
The collagen fibers in the anterior cornea extend from the 
anterior limiting lamina, interfelting with deeper fibers to 
form bow spring-like structures that are necessary to control 
corneal shape and in the process of corneal pathology[11]. 
A network of circumferentially oriented collagen fibrils 
in the periphery of the human cornea and an orthogonal 
arrangement of collagen fibrils in the central cornea are also 
present in the posterior stromal layer. This distribution pattern 
of collagen fibrils contributes to corneal biomechanical and 
curvature functions[12]. Collagen bundles in the corneal lamellae 
demonstrate a complex layout, merging and splitting within a 
single lamellar plane. The corneal collagens in the superficial 
and limbal cornea differ compared with those in the deep 
and central regions; specifically, the collagen bundles in the 
superficial layer were found to be smaller than those in the 
deep lamellae[13]. The corneal equivalent that was constructed 
with collagens was similar to the native cornea. The adherens 
junction proteins were expressed from the epithelial and 
endothelial layers, which hinted at the potency of cell junctions 
and the polarized morphology of these layers[14]. Furthermore, 
an increase in corneal fibril diameter observed in the peripheral 
cornea may have arisen through reinforcement involving 
scleral collagen[15]. In sclerocornea, the level of type I collagen 
was found to be similar to that in normal cornea, whereas type 
III collagen was faint in both normal cornea and sclerocornea 
but strong in normal sclera. Thus, this change could potentially 
contribute to the abnormal fibril assembly in sclerocornea[16]. In 
comparison, the immunophenotype of the corneal scars found 
in Peters anomaly and congenital glaucoma differs from that of 
normal cornea by the intensity of type I and type III collagen 
labelling[17]. In turn, the structural alterations exhibited by 
collagen XII and XIV null mice, which demonstrate delayed 
endothelial maturation, suggest that functional changes in 
endothelial function result in increased corneal thickness. The 
endothelial-stromal interactions suggest the involvement of a 
signal transduction pathway for signal transduction[18]. Type 
XII collagen isoforms constitute the surface component of 
type I collagen fibrils, which contribute to the stability of the 
fibrils in Bowman’s layer and the associated interfacial matrix 
that lies between Bowman's layer and the stroma proper[19]. 
Notably, type XII collagen is overexpressed in permanent 
human and mouse corneal scars and may therefore represent 
a novel target to treat corneal scarring[1], although it should 
be noted that the structure of the cornea of different species 
differs because of the surrounding environment[20]. At a gross 
morphological level, the collagen fibers and the collagen fibril-

maturating enzyme, lysyl oxidase, has also been shown to lead 
to dysregulation of corneal collagen fibers[21] (Figure 1).
DISTRIBUTION OF CORNEAL COLLAGENS
Corneal stromal collagen fibers (lamellae) are systematically 
ordered in a 3-D reticulum of lateral fibers that increases 
stromal stiffness and sustains corneal shape[22]. The corneal 
and scleral compaction at the corneal limbus by annular 
highly aligned collagen is necessary for corneal curvature 
and, hence, for the focusing power of the eye[23]. The corneal 
stroma primarily consists of a reticulum of fibrillar collagens 
that effects corneal optical and biomechanical actions. The 
use of X-ray diffraction to map the fibrillar organization, 
comprising the orientation and distribution of collagen 
lamellae in the corneal planum, has further demonstrated 
that this organization may vary owing to disease and surgical 
procedures[12]. In particular, collagen fibrils in the anterior 
part of the cornea are more isotropic, whereas collagen fibrils 
are directed toward the four major rectus muscles in the 
posterior part. The multitudinous orthogonal arrangement of 
collagen fibrils in the mid- and posterior parts of the corneal 
stroma helps to resist the strain from extraocular muscles. 
Simultaneously, the more isotropic arrangement of the anterior 
part of the cornea may play a key role in the biomechanics of 
the cornea by withstanding the intraocular pressure and corneal 
curvature[24-25]. Furthermore, collagen fibrils in the prepupillary 
cornea appear to be more compact than those in the peripheral 
cornea. The characteristic alignment of collagen fibrils can help 
to sustain the transparency and refractive index requirements 
of the cornea. Specifically, the high packing density of 
collagen fibrils is important for corneal strength and curvature 
in thinner areas of the cornea[26-28]. The regular arrangement of 
the collagen fibrils is critical for the transparency of the human 
cornea as is the maintenance of optimal hydration. Such 
arrangement is based on the presence of stromal proteoglycans 
and glycosaminoglycans[29]. Proteoglycans specifically regulate 
the organization of collagen fibrils in the corneal stroma via 
their protein core and highly anionic glycosaminoglycan side 
chains[30]. In addition, corneal collagen fibril orientations along 

Figure 1 Collagen component analysis and relative functions.

Corneal collagen fibrils
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the superior-inferior and the nasal-temporal meridians are 
dispersed to reinforce the collagen lamellar structures, which 
sustain the corneal refractive properties[31]. However, changes 
in the modality and alignment of corneal collagen lamellae 
have been observed in some pathological states. In the normal 
human cornea, collagen lamellae near to Bowman's layer are 
narrow by a steep angle, whereas a decrease in width and angle 
relative to Bowman's layer can be observed with the approach 
toward Descemet’s membrane. Conversely, the characteristics 
of the collagen lamellae are altered in keratoconus, inducing 
abnormalities in corneal shape[32-33]. In addition, the space 
between collagen fibrils is decreased and collagen fibrils with 
a large anteroposterior diameter can be observed in macular 
corneal dystrophy type I, with the deep stroma being affected 
to a greater degree[34]. Corneal collagen fibril orientation is 
also altered consequent to some pathological changes and 
injuries. For example, corneal exposure to alkali induced the 
irregular arrangement of a large number of fibroblasts and 
collagen fibers, combined with inflammatory cell infiltration[35]. 
Furthermore, during the healing process of a penetrating rabbit 
corneal wound, collagen could be observed to exhibit a circular 
pattern around the wound. Subsequently, the orientation 
of corneal collagen fibrils during the healing process of 
penetrating wounds gradually became more normal[36] (Figure 2). 
CORNEAL COLLAGEN DEGRADATION
Collagen architecture is important for corneal structure and 
function. Abnormalities in the concentration of collagenase 
can lead to the destruction of the normal collagen of the 
cornea, whereas a decrease in the activity of collagenase can 
reduce the degradation of corneal collagen[37]. In particular, 
extracellular accumulation of fibrillarcollagen can lead to 

tissue scarring. Alternatively, extra collagenfibrils were shown 
to be cleaved by proteolytic enzymes including zinc-dependent 
endopeptidase matrix metalloproteinases (MMPs)[38]. 
Notably, we demonstrated that MMPs are significantly 
upregulated in collagen-destructive disorders of the cornea[39]. 
The corneal degradation in corneal diseases is widely seen in 
clinical practice, such as in infectious keratitis, autoimmune 
ocular surface disorders, chemical burns, and refractive 
surgery. The common wound healing-related proteins, MMP-2, 
-8, -9, -13, and tissue inhibitor of MMP1,2 (TIMP-1,2) were 
detected at different time points in a fungal keratitis mouse 
experiment[40]. The transcriptional and translational levels of 
MMP-8, -9, -13, and TIMP-1 were proved to be increased 
during the early stages of Candida albicans keratitis. MMP-9
and TIMP-1 were also detected in other infectious keratitis 
models[41]. Pseudomonas aeruginosa keratitis is characterized 
by severe corneal collagen degradationand corneal ulceration. 
MMP activation plays a key role in bacterial keratitis and was 
found to be a major target for chronic inflammation involving 
pathologic tissue destruction[42]. MMP13 may contribute to 
P. aeruginosa keratitis through corneal basement membrane 
degradation, and it could be an additional therapy to treat 
microbial keratitis[43]. Imbalances in the MMP/TIMP system 
during virally induced inflammations are responsive to changes 
in the disease progression[44-45]. Lipopolysaccharide (LPS) 
increases MMPs and cytokine expression in corneal fibroblasts 
from patients with microbial keratitis, providing a local 
theory to remedy bacterial infection, even corneal ulceration 
and severe collagen degradation[46-47]. Autoimmune disorder 
was associated with dry eye syndrome, peripheral ulcerative 
keratitis, scleritis, and corneal melts. Tissue damage on the 

Figure 2 Distributions of corneal collagens, their architectural features, and functional advantages.



806

ocular surface of patients was autoimmune-mediated and 
could be treated by the inhibition of MMPs and T-cell subsets, 
B-cell signaling, or cytokines[48]. Inflammatory responses and 
neovascularization after the chemical burn aggravate corneal 
damage. MMPs are the angiogenic factor involved in the 
pathologic process of corneal chemical burn[49-50].
Accordingly, the degradation of preexisting and synthesized 
ECM is thought to play an important role in tissue 
remodelling. In particular, the degradation of 3-D collagen 
gels has been shown to be affected by the production and 
activation of MMPs[51]. Variation in corneal modality can also 
lead to corneal disease. For example, enzymes involved in 
glycosaminoglycan deficiencies in mucopolysaccharidoses 
(MPS) syndromes lead to a range of alterations in both 
interfibrillar and fibrillar ECM components of the cornea. 
Mechanisms involving excess matrix dermatan sulphate, 
chondroitin sulphate, heparin sulphate, or keratin sulphate 
in MPS VII may lead to the dysregulation of fibril shape[52]. 
Conversely, two majorcollagen peptides, prolyl-hydroxyproline 
(Pro-Hyp) and hydroxyprolyl-glycine (Hyp-Gly) exert a 
chemotaxis effect on dermal fibroblasts and enhance cell 
proliferation. Accordingly, the application of collagen 
hydrolysate with a higher content of Pro-Hyp and Hyp-Gly led 
to marked improvement in facial skin conditions, including 
facial skin moisture, elasticity, wrinkles, and roughness[53]. 
In addition, the reconstruction of the corneal surface using 
type I collagen membranes might be considered in patients 
with disunioning ulcerations, as transforming growth factor 
β-induced protein (TGFBIp) represents an ECM protein cross-
linked to type XII collagen through a reducible bond in the 
cornea[54]. However, whether membranes with faster or slower 
degradation properties would be preferable for the treatment 
of persistent corneal ulcerations may depend on the underlying 
corneal pathology and the degree of coinstantaneous 
inflammation[55]. Furthermore, to increase the resistance to 
enzymatic degradation, pretreatment with intrastromal and 
superficial very high-fluence corneal cross-linking (CXL) in 
conjunction with Bostontype1keratoprosthesis may represent a 
safe and effective adjunctive treatment.
MMPs are responsible for the degradation of ECM proteins 
participating in different pathological processes including 
tissue remodelling, cancer development, and wound healing. 
For example, resident corneal fibroblasts have been shown to 
mediate degradation through the release of MMPs following 
injury and infection[56-58]. Specifically, keratinocytes are 
changed to myofibroblasts to phagocytose debris in the corneal 
stroma wound healing process. Keratinocyte production of 
MMPs is mediated by interleukin-1 (IL-1), plasminogen, 
and urinary plasminogen activator (uPA)[59-60]. Subsequently, 
the excessive dissolution of corneal tissue by MMPs that 
have been activated by cytokines and chemokines may lead 
to corneal ulcer[61]. In turn, MMP-9 can be cleaved by α6β4 

integrin and collagen XVII, which is defective in the blistering 
disease junctional epidermolysis bullosa. Furthermore, an 
MMP-9 inhibitor has been shown to reduce the lamina lucida 
of epithelial-stromal separation damage in the cornea[58], 
and the inhibition of MMP expression and activity in IL-1β-
stimulated corneal fibroblasts was found to suppress collagen 
degradation by these cells[62]. Therefore, the inhibition of 
corneal collagen degradation induced by cytokines has been 
suggested as a potential target for the treatment of corneal 
ulcer[57]. This application may also enhance the biomechanical 
stability and external disease resistance of the donor cornea 
in patients with advanced external disease[63]. Conversely, 
collagen degradation may be considered a potentially suitable 
intervention for mediating the damage following corneal 
injuries and infections.
CORNEAL COLLAGEN CONTRACTION
Collagen synthesis and collagen degradation are precisely 
balanced to maintain normal corneal tissue architecture. In 
particular, collagen contraction mediated by corneal fibroblasts 
is implicated in the maintenance of corneal shape[64-65]. 
Conversely, fibrosis in the lung represents the destruction of 
the normal architecture with the appearance of inflammatory 
cells and excess collagen[66]. Transforming growth factor 
beta 1 (TGF-β1), which plays a key role in mediating ECM 
gene expression[67], significantly increased ECM contraction. 
In mice, decreasing the severity of tissue fibrosis is required 
for the removal of the accumulated collagen[68]. In addition, 
although appropriate corneal scarring can prevent the cornea 
from excessive damage during wound healing and corneal 
infection, excessive tissue repair can be characterized by 
inhibited degradation and enhanced ECM deposition, which 
has been shown to be involved in tissue destruction and 
fibrogenesis[67]. Notably, collagen overproduction is associated 
with many diseases such as cancers and fibrosis[69]. As 
previously mentioned, irregular collagen fiber arrangements 
were produced by corneal alkali exposure in addition to 
excess fibroblasts and inflammatory cells[35]. Keratoconus is a 
progressive disease relative to defects in the corneal stroma. 
TGF-β1 exposure significantly increased ECM contraction, 
collagen I, and collagen V expression by human keratoconus 
cells[70].
Small-incision lenticule extraction is superior to femtosecond 
lenticule extraction in early ocular surface changes and nerve 
growth factor. TGF-β1 and IL-1α may contribute to the process 
of ocular surface recovery[71].
Burn scar contracture based on α-smooth muscle action 
(α-SMA) and collagen deposition induced by TGF-β1 can lead 
to an increase in myofibroblast population, which can induce 
severe deformation and functional impairment. To prevent the 
contraction of burn wound without delaying, the aim of the 
therapy will be wound closure[72].
Collagen I and III augmentation in the corneal matrix promotes 

Corneal collagen fibrils
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defects from scarring[73]. Furthermore, ECM remodelling is 
thought to have profound effects on tissue architecture and 
function. Thus, the matrix accumulation stimulated by TGF-β 
leads to altered morphology[74]. In addition, the transformation 
of quiescent keratinocytes to active phenotypes and the 
ensuing fibrotic response play important roles in corneal 
scar formation. Accordingly, the mediation of an antifibrotic 
effect may represent a novel approach for the treatment of 
corneal opacity and scar formation during the corneal wound 
healing process[75]. Furthermore, the formation of a collagen 
network composed of fibrillar collagens in the corneal ECM 
has a decisive effect on tissue stiffness. Thus, additional 
investigation is required to elucidate the characteristics and 
regulation of corneal collagen fibrils[76] (Figure 3).
CORNEAL COLLAGEN IN CORNEAL ENGINEERING
Corneal scarring is predominately treated with allogeneic graft 
tissue. However, the clinical treatment of corneal disease is 
limited because of a severe shortage of high-quality allogeneic 
corneal tissues and the potential for bacterial infection 
after corneal transplantation[77]. Therefore, a well-tolerated 
scaffold is required for a tissue engineered cornea that permits 
the adequate growth of incorporated cells and that is not 
immunogenic[78]. Collagen scaffolds represent good choices 
for the construction of artificial corneas with good resilience, 
long-term culture capability, and handling properties[79]. 
Specifically, collagen vitrigel membranes characterized by 
regular, well-organized fibrillar structures are transparent 
biomaterials that appear to be optimal for the therapeutic 
treatment of corneal disease, tissue engineering, and corneal 
repair and regeneration[80-83]. In particular, it was shown that 
expression of the myofibroblast marker α-SMA decreased and 
that of corneal crystallin-transketolase increased on collagen 
nanofiber substrates compared with that on flat glass control 
substrates. Matrix nanotopography reduced the fibrotic 
phenotype, induced formation of the quiescent keratinocyte 
phenotype, and influenced matrix synthesis[84]. Simultaneously, 

the mechanical properties including the suture retention 
strength of the collagen-based scaffolds must be further 
developed with an emphasis on clinical applications[85]. In 
addition, to be clinically useful, collagen fibrils would require 
a lack infiltration of inflammatory cells and fibroblast-like cells 
into the implant[86]. Under general circumstances, cells and 
ECM are randomly distributed in tissue engineered cornea. It 
will be a challenge to adjust the orientation of the cell layers 
and secreted ECM in a self-assembled tissue sheet[87]. Notably, 
cell-free implants comprising carbodiimide-cross-linked 
recombinant human collagen were found to enable endogenetic 
corneal cell recruitment and were able to relieve a shortage of 
donor tissue during keratoplasty[88]. Furthermore, tripeptides 
derived fromcollagenare absorbed efficiently by the body. 
Type I collagen and its daughter peptide, collagen hydrolysate, 
have functioned as highly popular reconstructive materials for 
tissue engineering applications, showing significant reduction 
in the mucosal damage score and facilitated faster regeneration 
of damaged mucosa than did controls[89-91]. In addition, 
polycaprolactone film cross-linked with collagen-derived 
proteins was able to further enhance the biocompatibility[92]. 
Another study generated a novel gelatin hydrolysate using a 
cysteine-type ginger protease, which exhibited unique substrate 
specificity with preferential peptide cleavage with Pro at the P2 
position. Substantial amounts of X-hydroxyproline (Hyp)-Gly-
type tripeptides were generated concomitantly with Gly-Pro-Y-
type tripeptides using ginger powder. This study demonstrated 
that orally administered X-Hyp-Gly was effectively absorbed 
into the blood, probably owing to the high protease resistance 
of this type of tripeptide[93]. Thus, the arrangement of stromal 
collagen fibrils may be used to influence the engineered 
corneas, which appear to exhibit great promise as valid 
treatments for facilitating corneal health and transparency. 
Specifically, engineered corneal tissues containing long parallel 
collagen fibrils with uniform diameter represent a novel, cell-
generated biomaterial for the therapy of corneal blindness[94].

Figure 3 Balance of corneal collagen degradation and contraction.
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IMPROVEMENTS IN CORNEAL CROSS-LINKING 
CXL is a process wherein riboflavin sensitization with ultra-
violet A radiation is used to induce stromal cross-links. This 
alters corneal biomechanics, improving corneal stiffness and 
decreasing its damping capability and deformability. CXL 
plays roles in the therapy of chemical burns, corneal infections, 
corneal edema, and bullous keratopathy[2,95]. In particular, CXL 
offers the possibility of halting the progression of keratoconus 
and strengthening the cornea[96].
Therapy of keratoconus with riboflavin/ultraviolet A (UVA) 
causes obvious stiffening of the cornea due to cross-linking[97]. 
Although CXL can leave residual stromal scarring, it can 
also make a rapid resolution of the infective keratitis[98]. 
CXL can induce healing in microbial keratitis patients by 
the method of improving symptoms and signs of reduced 
inflammation and achieving epithelial healing[99]. Pretreatment 
with CXL associated with Boston type 1 keratoprosthesis 
proved to be a safe and effective method for achieving 
donor cornea rigidity and increased resistance to enzymatic 
degradation[63]. In refractory keratitis in patients with the 
Boston type I keratoprosthesis, CXL can present a shield 
covering by reducing the infiltration of refractory keratitis[100]. 
CXL combined with lamellar keratoplasty and amniotic 
membrane transplantation can be an optimal choice to treat 
recurrent corneal melting after Boston type I keratoprosthesis 
implantation[101].
The method of CXL has been refined through many technical 
artifices[102]. Gamma irradiation-based CXL has helped gener-
ate clearer and thinner corneas without endothelium for trans-
plant compared to cryopreserved and fresh corneas, and thus 
can be used as a lamellar substance[103]. CXL has also served as 
an option in the treatment of infectious keratitis[104]. CXL may 
increase corneal strength and refractive power in patients[105]. 
In addition, riboflavin-UV-CXL can reduce suture-associated 
complications such as haze formation and ocular surface irreg-
ularity. However, further studies are required to ascertain the 
biostability of CXL and to identify additional applications[106].
CONCLUSION
This review has presented the roles of collagenous fibrils in the 
physiology and pathology of the cornea. We reviewed corneal 
dynamics from a structural perspective, considered the roles 
and interrelationships of collagens, proteoglycans, and MMPs 
on collagen pathology, collagen degradation, contraction 
balance, and corneal tissue engineering. These data shed light 
on the maintenance and reconstitution of collagen-associated 
corneal transparency.
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