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Abstract 
● Metformin (MET), a first-line oral agent used to treat 
diabetes, exerts its function mainly by activating adenosine 
monophosphate-activated protein. The accumulation of 
oxidized phospholipids in the outer layer of the retina plays 
a key role in retinal pigment epithelium (RPE) cells death 
and the formation of choroidal neovascularization (CNV), 
which mean the development of age-related macular 
degeneration (AMD). Recent studies have shown that MET 
can regulate lipid metabolism, inhibit inflammation, and 
prohibit retinal cell death and CNV formation due to various 
pathological factors. Here, newly discovered functions of 
MET that may be used for the prevention and treatment of 
AMD were reviewed.
● KEYWORDS: metformin; age-related macular 
degeneration; liver X receptor
DOI:10.18240/ijo.2021.08.20

Citation: Dang KR, Wu T, Hui YN, Du HJ. Newly-found functions 
of metformin for the prevention and treatment of age-related macular 
degeneration.  Int J Ophthalmol 2021;14(8):1274-1280 

INTRODUCTION

M etformin (MET) was first used to treat diabetes in 
1957 and is currently one of the most widely used 

oral glucose-lowering drugs. Recent studies showed that 
MET can also decrease the risk of developing cardiovascular 
disease, exert antioxidant, anti-senescence, weight loss, 
nephroprotective and antineoplastic effects[1-4]. In the field of 
ophthalmology, it has been demonstrated that MET can reduce 
retinal cell death due to various pathological factors, alleviate 

diabetic retinopathy, and inhibit corneal and intraocular 
neovascularization[5-15]. The latest clinical studies revealed that 
MET can reduce the occurrence or delay the progression of 
age-related macular degeneration (AMD)[16-19]. However, the 
mechanisms of MET in this process remain unclear. This paper 
provides a literature review on newly discovered functions 
of MET that may be used for the prevention and treatment of 
AMD and the mechanisms involved. 
R O L E  O F O X I D I Z E D  P H O S P H O L I P I D S  I N 
PATHOGENESIS OF AMD  
AMD is the primary cause of irreversible blindness in elderly 
people. There are an estimated 196 million patients with 
AMD globally in 2020[20]. AMD is classified as the early, 
moderate and late stages. The late stage of AMD is classified 
as dry (atrophic) or wet (neovascular) types according to 
pathological changes. The former occurs mainly because of 
the death of retinal pigment epithelium (RPE) cells, resulting 
in the degeneration of neuroretina, whereas the latter is due 
to choroidal neovascularization (CNV), which further causes 
bleeding and exudation.
Currently, AMD is thought to result from a combination of 
genetic, age-related, environmental, dietary, and other factors, 
among which age plays a crucial role[20-21]. With aging, the 
phagocytosis of RPE cells is reduced and detached outer 
segments of photoreceptor cells accumulate in RPE cells and 
beneath the RPE layer. This results in thickening of the Bruch’s 
membrane and drusen formation[22], i.e., early AMD. Drusen 
contains abundant apolipoproteins, unsaturated fatty acid 
phospholipids, and cholesterol. Phospholipids are susceptible 
to oxidation and tend to form oxidized phospholipids 
(OxPLs). OxPLs mainly exists as oxidized low-density 
lipoprotein (OxLDL) in vivo. OxLDL enters RPE cells through 
CD36 receptors and further activates nucleotide-binding 
oligomerization domain-like receptor protein 3 (NLRP3)[23-24]. 
The activated NLRP3 inflammasome can induce the secretion 
of interleukin-1β (IL-1β) and IL-18, resulting in RPE cell 
pyroptosis. Secreted IL-1β can activate the inflammasome to 
further aggravate inflammation. Additionally, the activated 
NLRP3 inflammasome can promote CD36 expression and 
increase OxLDL uptake. These actions reduce ATP-binding 
cassette transporter A1 (ABCA1)-mediated cholesterol efflux, 
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further exacerbating intracellular cholesterol overload[23,25-26]. 
Given its strong oxidative and pro-inflammatory properties, 
OxPLs is considered as a key factor in AMD (Figure 1).
CURRENT STATUS OF AMD TREATMENT
Pathogenesis of AMD is not completely understood and its 
treatment remains unsatisfactory. Currently, treatments mainly 
target CNV in wet AMD, and available treatments include 
laser photocoagulation, photodynamic therapy, transpupillary 
thermotherapy, vitreous surgery for the excision of submacular 
neovascular membranes, as well as intravitreal injection of 
glucocorticoid and anti-vascular endothelial growth factor 
(VEGF) agents. Among these methods, intraocular injection 
of anti-VEGF agents is currently a mainstay treatment and 
has shown positive effects. However, the recurrence of CNV, 
high cost, injection-related complications, RPE cell death due 
to VEGF inhibition, vision loss, etc., should not be ignored[27]. 
In addition, no effective treatment is available for dry AMD, 
which accounts for more than 85% of AMD cases. The results 
of the AREDS study showed that antioxidant treatment can 
only limit disease progression[28]. Stem cell and complement-
related treatments are still being researched[27,29].
MAIN FUNCTIONS AND MECHANISM OF MET
MET was isolated from the extract of goat’s rue (Galega 
officinalis) and was first used to treat diabetes 64 years ago. 
In addition to its glucose-lowering effects, an increasing 
number of studies have shown that MET can regulate lipid 
metabolism, reduce inflammatory and oxidative damage, and 
inhibit neovascularization[3]. Oxidative stress and inflammation 
induced by OxPLs are thought to play an important role in the 
pathogenesis of AMD, hyperglycemia is also considered as a 
risk factor for AMD. Therefore, it is reasonable to believe that 
MET may be used for the prevention and treatment of AMD 
through above effects.
About the mechanism of MET, it is thought that the glucose-
lowering effect occur through inhibition of NADH: ubiquinone 
oxidoreductase (mitochondrial electron transport chain 
“complex I”) in the inner mitochondrial membrane to decrease 
ATP yield and increase the AMP/ATP ratio[30]. This metabolic 
transformation results in adenosine monophosphate-activated 
protein kinase (AMPK) activation, which is a key molecule 
in regulating energy metabolism and plays an important role 
in diabetes and other metabolic disorders. After activated, 
AMPK can shut down many downstream synthetic pathways 
that consume ATP and activate ATP degradation pathways to 
restore physiological energy equilibrium[31]. 
CRUCIAL ACTIONS OF MET FOR CONTROLLING 
AMD
Recently, retrospective studies[16-19] showed that MET 
decreased the incidence of AMD in a time- and dose-dependent 
manner. To exclude the effects of glucose-lowering on AMD 

occurrence, the authors simultaneously studied the effects 
of another diabetes drug on AMD occurrence. The results 
revealed no significant relationship between this drug and 
AMD. Currently, it is thought that the mechanisms involved 
are as follows:
MET Can Reduce Drusen Formation Through AMPK/
LXR Pathway  Liver X receptor (LXR) is a ligand-activated 
nuclear transcription factor, its activation can induce the 

Figure 1 The role of OxPLs in pathogenesis of AMD and the main 
functions of MET to prevent and treat AMD  Lipid accumulation 
resulted from aging of RPE on one hand leads to the thickening of 
Bruch’s membrane, which further leads to choroidal hypoxia, the 
expression of HIF-1 and VEGF, and ultimately the formation of 
CNV; on the other hand, it leads to the formation of drusen, which is 
the hallmark of early AMD. OxPLs in drusen induce inflammation 
and oxidative stress, which further cause programmed cell death, 
such as pyroptosis and apoptosis of RPE cells. Pyroptotic cell in 
turn aggravates inflammation by releasing pro-inflammation factors, 
and further promotes CNV formation. The death of RPE cells leads 
to the degeneration of the neuroretina. CNV formation and retinal 
degeneration mark the late stage of AMD. MET can activate AMPK. 
AMPK activation can reduce lipid accumulation through AMPK/
LXR pathway, suppress inflammation, prohibit retinal cells from 
death, and inhibit CNV formation, thus to prevent and treat AMD. 
OxPLs: Oxidized phospholipids; RPE: Retinal pigment epithelium; 
AMPK: Adenosine monophosphate-activated protein kinase; LXR: 
Liver X receptor; HIF-1: Hypoxia inducible factor-1; VEGF: Vascular 
endothelial growth factor; AMD: Age-related macular degeneration; 
CNV: Choroidal neovascularization.
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expression of lipid metabolism regulating genes and reduce 
cholesterol accumulation[32]. Studies in macrophage showed 
that MET depends on the AMPK/LXR pathway to increase 
the expression of inducible degrader of the LDL receptor, 
increase LDL receptor degradation, and reduce OxLDL 
uptake. Additionally, MET increases ABCA1/G1 expression 
to promote cholesterol efflux, thus to reduce intracellular 
cholesterol accumulation and drusen formation[33-37].
MET Can Inhibit Inflammation  Macrophages are the most 
important inflammatory cells. Studies have shown that MET 
can activate AMPK to inhibit lipopolysaccharide (LPS)-
induced synthesis of tumor necrosis factor-alpha (TNF-α), 
monocyte chemoattractant protein-1 (MCP-1), and reactive 
oxygen species (ROS)[38-39]. Kelly et al[40] found that MET can 
inhibit LPS-induced pro-IL-1β expression in a dose-dependent 
manner while simultaneously increasing the expression of anti-
inflammatory IL-10 in macrophages.
In addition to its effects on macrophages, addition of MET 
to the culture medium of human umbilical vein endothelial 
cells (HUVEs) in vitro significantly inhibited TNF-α induced 
expression of vascular cell-adhesion molecule-1 (VCAM-1), 
intercellular cell-adhesion molecule-1 (ICAM-1), E-selectin, and 
MCP-1. AMPK played a central role in this process[41-42]. In 
vivo studies showed that treatment with MET in patients with 
type 2 diabetes for 3mo significantly reduced the levels of 
vascular endothelium-related factors, such as tissue plasminogen 
activator, VCAM-1, and ICAM-1, and improved vascular 
function[43]. In a model of ischemia reperfusion injury, MET 
decreased the expression of IL-1β, TNF-α, toll-like receptor 
4 (TLR4), and chemokine C-C motif receptor 2 (CCR2), 
and reduced infiltration by monocytes and macrophages, 
thereby reducing inflammatory damage to the liver[44]. In 
addition, MET promotes a shift from the pro-inflammatory 
M1 phenotype to an anti-inflammatory M2 phenotype in 
macrophages to exert its anti-inflammatory effects[45].
In experimental uveitis, the levels of IL-1β, TNF-α, MCP-1, 
IL-6, and IL-18 are increased in the aqueous humor and the 
outer segments of photoreceptor cells shrink. MET and AMPK 
agonists can activate AMPK, thereby inhibiting activation of 
cyclooxygenase 2, inducible nitric oxide synthase, and NF-κB 
to inhibit these changes[46-47].
MET Can Prohibit RPE and Photoreceptor from Death  
RPE and photoreceptor death are main pathological changes 
of late stage AMD. Cell death can be classified as programmed 
cell death (apoptosis, autophagy, pyroptosis, necroptosis, 
ferroptosis etc.) and necrosis. Studies showed that pyroptosis 
and apoptosis are the main forms of cell death induced by 
OxPLs[48]. 
MET can maintain intracellular lipid metabolic equilibrium 
through AMPK/LXR pathway, prevent NLRP3 protein 

expression and inflammasome activation, and inhibit the 
release of inflammatory factors, thereby reducing cell death[49-51]. 
In addition, cardiac studies showed that MET can reduce sodium 
arsenite-induced secretion of IL-5, TNF-α, IL-1β, caspase-3 
activation, and cardiomyocyte apoptosis[52]. Endothelial cell 
studies showed that MET can prevent high glucose-induced 
increased mitochondrial permeability and cytochrome C 
(Cyt-C) release to prevent endothelial cell apoptosis[53].
Studies have shown that MET can activate the AMPK 
and PI3K/Akt/mTOR/S6K pathways, increase superoxide 
dismutase (SOD) and glutathione levels, induce nuclear factor 
erythroid-2-related factor 2 (Nrf2) aggregation, and increase 
mitochondrial energy reserves to reduce retinal ganglion cell 
and RPE cell death in many oxidative stress and inflammation 
models[6,8,47,54-63]. Peroxisome proliferator-activated receptor 
gamma coactivator 1-alpha (PGC-1α) regulates mitochondrial 
biosynthesis. AMPK activation can regulate mitochondrial 
function through PGC-1α and alleviate senescence and injury 
in RPE cells caused by hydrogen peroxide (H2O2), TNF-α, and 
ultraviolet light[56-57,64], and photoreceptor cell death[65]. Other 
studies showed that the AMPK-mTOR pathway can induce 
autophagy in RPE cells which plays an important role in self-
clearance and the maintenance of normal cellular function. 
Therefore, this pathway is also regarded as useful for AMD 
prevention and treatment[66-67]. In summary, MET can activate 
AMPK to reduce RPE and photoreceptor cell death in the 
prevention and treatment AMD.
MET Can Inhibit CNV Formation  The relationship 
between inflammation and neovascularization has been 
demonstrated[68-69]. OxLDL can induce cell pyroptosis and 
releasing of IL-1β, which promotes the expression of hypoxia-
inducible factor-1 alpha (HIF-1α) and VEGF. IL-1β can also 
simulate mast cells to secrete IL-8, promoting the survival 
and proliferation of vascular endothelial cells and expression 
of matrix metalloproteinase (MMP)-2 and MMP-9, thereby 
promoting neovascularization[69-72]. In addition, the disrupted 
outer retinal barrier facilitates the spread of inflammatory 
factors and growth factors as well as the subsequent growth 
of CNV into the retina. In addition to increasing the release 
of inflammatory factors, OxLDL can also promote CNV 
by increasing VEGF, VEGF receptor 2 (VEGFR2), and 
transforming growth factor beta (TGF-β) expression of 
vascular endothelial cells[73-74].
As MET can inhibit inflammation, it can reduce inflammation-
related neovascularization[75]. In addition, experiments showed 
that AMPK activation can decrease MMP-2 and MMP-9 expression 
in endothelial cells and endothelial progenitor cells, and inhibit 
cell proliferation, migration, and tube formation[76-77]. Han 
et al[78] showed that MET can inhibit TNF-induced expression 
of ICAM-1 and MCP-1, as well as inhibit the proliferation, 
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migration, and tube formation of endothelial cells, thereby 
preventing retinal neovascularization. MET can also reduce 
intracellular cholesterol in vascular endothelial cells, thus 
to disrupt the structure of lipid rafts, inhibit VEGFR2 
dimerization and phosphorylation, and block VEGF-induced 
neovascularization[79]. Further analysis showed that MET 
can induce VEGF-A mRNA splicing to form VEGF120, 
thereby reducing VEGFR2 activation[5,80]. Studies of oxygen-
induced retinopathy (OIR) and very low-density lipoprotein 
receptor (VLDL-R) knockout animal models also showed that 
MET can decrease vascular inflammation and inhibit retinal 
neovascularization[5,78]. In the laser-induced mouse CNV 
model, intraperitoneal injection of MET could inhibit CNV 
formation[9]. Clinical studies also showed that long-term MET 
treatment decreased the levels of VEGF and plasminogen 
activator inhibitor (PAI-1) in patients with type 2, thereby 
alleviating the severity of diabetic retinopathy and reducing the 
incidence of AMD[81].
CONCLUSION
In summary, oxidative stress and inflammation induced by 
OxPLs, a main component of drusen, can cause RPE cell death 
and CNV formation, which are the main pathological changes 
in late-stage AMD. MET was recently found to have the 
functions to regulate lipid metabolism, inhibit inflammation, 
prohibit retinal cells from death, and inhibit CNV formation 
(Figure 1). This makes MET a good candidate drug to 
prevent and treat AMD. Further in-depth investigation of the 
mechanism by which MET affects AMD and multicenter 
clinical studies are needed to validate the efficacy of MET and 
the way of its administration in AMD. 
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