Early results of circularity and centration of capsulotomy prepared by three different methods
Author:
Corresponding Author:

Jagadesh C. Reddy. Cataract & Refractive Services, Cornea Institute, L V Prasad Eye Institute, L V Prasad Marg, Banjara Hills, Hyderabad 500034, India. jagadeshreddy@lvpei.org

Fund Project:

Supported by Hyderabad Eye Research Foundation (HERF), Hyderabad, Telangana, India.

  • Article
  • | |
  • Metrics
  • |
  • Reference [27]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    AIM: To compare the difference of capsulotomy produced by precision pulse capsulotomy (PPC), manual (M-CCC), and femtosecond laser assisted capsulotomy (FLAC) in relation to intraocular lens (IOL) centration, circularity and its effect on visual outcomes. METHODS: Prospective, non-randomized comparative study conducted at LV Prasad Eye Institute, Hyderabad, India. Sixty eyes of 52 patients were grouped into 3 (FLAC, PPC and M-CCC) based on capsulotomy techniques used. Twenty consecutive eyes with uneventful phacoemulsification and with no comorbidities affecting the capsulotomy or visual outcome were included in each group. The main outcome measure was IOL centration in relation to capsulotomy and pupil. Secondary outcome measures were post-operative visual acuity, manifest refraction and aberration profile between groups. RESULTS: At 5wk the visual, refractive outcomes and endothelial cell density were comparable between the 3 groups. The median circularity index of FLAC was statistically significantly different to M-CCC or PPC (1-10) groups (P<0.01) but PPC (11-20) was comparable to FLAC. Decentration of IOL center in relation to capsulotomy was seen only between the PPC (1-10) group and FLAC group (P=0.02). The IOL was well centered in relation to the pupil in all the groups (P=0.46). The quality of vision parameters like the higher order aberrations, spherical aberration, coma, trefoil, modular transfer function, and Strehl ratio were comparable between the groups. CONCLUSION: Our study shows that despite differences in the morphology of capsulotomy produced by PPC, M-CCC, FLAC a well-centered IOL can be achieved. The measured capsular morphology parameters do not affect visual outcomes.

    Reference
    1 Altmann GE, Nichamin LD, Lane SS, Pepose JS. Optical performance of 3 intraocular lens designs in the presence of decentration. J Cataract Refract Surg 2005;31(3):574-585.
    2 Okada M, Hersh D, Paul E, van der Straaten D. Effect of centration and circularity of manual capsulorrhexis on cataract surgery refractive outcomes. Ophthalmology 2014;121(3):763-770.
    3 Soylak M. Novel device for creating continuous curvilinear capsulorhexis. Springerplus 2016;5(1):2053.
    4 Hu WF, Chen SH. Advances in capsulorhexis. Curr Opin Ophthalmol 2019;30(1):19-24.
    5 Grewal DS, Schultz T, Basti S, Dick HB. Femtosecond laser-assisted cataract surgery——current status and future directions. Surv Ophthalmol 2016;61(2):103-131.
    6 Ibrahim T, Goernert P, Rocha G. Effect of femtosecond laser on efficiency of cataract surgery in public setting. Can J Ophthalmol 2018;53(1):56-59.
    7 Abell RG, Vote BJ. Cost-effectiveness of femtosecond laser-assisted cataract surgery versus phacoemulsification cataract surgery. Ophthalmology 2014;121(1):10-16.
    8 Chang DF, Mamalis N, Werner L. Precision pulse capsulotomy: preclinical safety and performance of a new capsulotomy technology. Ophthalmology 2016;123(2):255-264.
    9 Hooshmand J, Abell RG, Allen P, Goemann K, Vote BJ. Intraoperative performance and ultrastructural integrity of human capsulotomies created by the improved precision pulse capsulotomy device. J Cataract Refract Surg 2018;44(11):1333-1335.
    10 Hooshmand J, Abell RG, Allen P, Vote BJ. Thermal capsulotomy: Initial clinical experience, intraoperative performance, safety, and early postoperative outcomes of precision pulse capsulotomy technology. J Cataract Refract Surg 2018;44(3):355-361.
    11 Waltz K, Thompson VM, Quesada G. Precision pulse capsulotomy: Initial clinical experience in simple and challenging cataract surgery cases. J Cataract Refract Surg 2017;43(5):606-614.
    12 Park MJ, Bang CW, Han SY. Precision pulse capsulotomy in challenging cataract surgery cases. Clin Ophthalmol 2019;13:1361-1368.
    13 Thompson VM, Berdahl JP, Solano JM, Chang DF. Comparison of manual, femtosecond laser, and precision pulse capsulotomy edge tear strength in paired human cadaver eyes. Ophthalmology 2016;123(2):265-274.
    14 Kránitz K, Takacs A, Miháltz K, Kovács I, Knorz MC, Nagy ZZ. Femtosecond laser capsulotomy and manual continuous curvilinear capsulorrhexis parameters and their effects on intraocular lens centration. J Refract Surg 2011;27(8):558-563.
    15 Kránitz K, Miháltz K, Sándor GL, Takacs A, Knorz MC, Nagy ZZ. Intraocular lens tilt and decentration measured by Scheimpflug camera following manual or femtosecond laser-created continuous circular capsulotomy. J Refract Surg 2012;28(4):259-263.
    16 Bang SP, Jun JH. Comparison of postoperative axial stability of intraocular lens and capsulotomy parameters between precision pulse capsulotomy and continuous curvilinear capsulotomy: a prospective cohort study. Medicine (Baltimore) 2019;98(48):e18224.
    17 Chang DF. Zepto precision pulse capsulotomy: a new automated and disposable capsulotomy technology. Indian J Ophthalmol 2017;65(12):1411-1414.
    18 Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A. Fiji: an open-source platform for biological-image analysis. Nat Methods 2012;9(7):676-682.
    19 Gonzalez RC, Woods RE, Eddins SL. Digital Image Processing Using MATLAB. Second Edition, United States of America, Gatesmark, 2009.
    20 Hollick EJ, Spalton DJ, Meacock WR. The effect of capsulorhexis size on posterior capsular opacification: one-year results of a randomized prospective trial. Am J Ophthalmol 1999;128(3):271-279.
    21 Korynta J, Bok J, Cendelin J. Changes in refraction induced by change in intraocular lens position. J Refract Corneal Surg 1994;10(5):556-564.
    22 Nagy ZZ, Kránitz K, Takacs AI, Miháltz K, Kovács I, Knorz MC. Comparison of intraocular lens decentration parameters after femtosecond and manual capsulotomies. J Refract Surg 2011;27(8):564-569.
    23 Thompson V. Streamlined method for anchoring cataract surgery and intraocular lens centration on the patient’s visual axis. J Cataract Refract Surg 2018;44(5):528-533.
    24 Schultz T, Tsiampalis N, Dick HB. Laser-assisted capsulotomy centration: a prospective trial comparing pupil versus OCT-based scanned capsule centration. J Refract Surg 2017;33(2):74-78.
    25 Holladay JT, Piers PA, Koranyi G, van der Mooren M, Norrby NE. A new intraocular lens design to reduce spherical aberration of pseudophakic eyes. J Refract Surg 2002;18(6):683-691.
    26 Pérez-Merino P, Marcos S. Effect of intraocular lens decentration on image quality tested in a custom model eye. J Cataract Refract Surg 2018;44(7):889-896.
    27 Kelkar JA, Mehta HM, Kelkar AS, Agarwal AA, Kothari AA, Kelkar SB. Precision pulse capsulotomy in phacoemulsification: Clinical experience in Indian eyes. Indian J Ophthalmol 2018;66(9): 1272-1277.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

Jagadesh C. Reddy, Soumya Devta, Kiran Kumar Vupparaboina,/et al.Early results of circularity and centration of capsulotomy prepared by three different methods. Int J Ophthalmol, 2021,14(1):76-82

Copy
Share
Article Metrics
  • Abstract:826
  • PDF: 709
  • HTML: 0
  • Cited by: 0
Publication History
  • Received:June 01,2020
  • Revised:August 12,2020
  • Online: January 18,2021