Newly-found functions of metformin for the prevention and treatment of age-related macular degeneration
Author:
Corresponding Author:

Hong-Jun Du. Department of Ophthalmology, Xijing Hospital, Eye Institute of Chinese PLA, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China. dhj2020@126.com

Fund Project:

Supported by the Natural Science Foundation of Shaanxi Province (No.2019SF-047).

  • Article
  • | |
  • Metrics
  • |
  • Reference [81]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Metformin (MET), a first-line oral agent used to treat diabetes, exerts its function mainly by activating adenosine monophosphate-activated protein. The accumulation of oxidized phospholipids in the outer layer of the retina plays a key role in retinal pigment epithelium (RPE) cells death and the formation of choroidal neovascularization (CNV), which mean the development of age-related macular degeneration (AMD). Recent studies have shown that MET can regulate lipid metabolism, inhibit inflammation, and prohibit retinal cell death and CNV formation due to various pathological factors. Here, newly discovered functions of MET that may be used for the prevention and treatment of AMD were reviewed.

    Reference
    1 Viollet B, Guigas B, Sanz Garcia N, Leclerc J, Foretz M, Andreelli F. Cellular and molecular mechanisms of metformin: an overview. Clin Sci (Lond) 2012;122(6):253-270.
    2 Ursini F, Russo E, Pellino G, D’Angelo S, Chiaravalloti A, De Sarro G, Manfredini R, De Giorgio R. Metformin and autoimmunity: a “new deal” of an old drug. Front Immunol 2018;9:1236.
    3 Zhou J, Massey S, Story D, Li LX. Metformin: an old drug with new applications. Int J Mol Sci 2018;19(10):2863.
    4 Zhao QS, Song W, Huang JQ, Wang D, Xu CW. Metformin decreased myocardial fibrosis and apoptosis in hyperhomocysteinemia -induced cardiac hypertrophy. Curr Res Transl Med 2021;69(1):103270.
    5 Joe SG, Yoon YH, Choi JA, Koh JY. Anti-angiogenic effect of metformin in mouse oxygen-induced retinopathy is mediated by reducing levels of the vascular endothelial growth factor receptor Flk-1. PLoS One 2015;10(3):e0119708.
    6 A L, Zou T, He J, Chen X, Sun D, Fan X, Xu H. Rescue of retinal degeneration in rd1 mice by intravitreally injected metformin. Front Mol Neurosci 2019;12:102.
    7 Shu CW, Tsen CL, Li MS, Bee YS, Lin SH, Sheu SJ. Metformin and rapamycin protect cells from vital dye-induced damage in retinal pigment epithelial cells and in vivo. Graefes Arch Clin Exp Ophthalmol 2020;258(3):557-564.
    8 Xu L, Kong L, Wang JG, Ash JD. Stimulation of AMPK prevents degeneration of photoreceptors and the retinal pigment epithelium. Proc Natl Acad Sci U S A 2018;115(41):10475-10480.
    9 Ying Y, Ueta T, Jiang S, Lin H, Wang Y, Vavvas D, Wen R, Chen YG, Luo Z. Metformin inhibits ALK1-mediated angiogenesis via activation of AMPK. Oncotarget 2017;8(20):32794-32806.
    10 Qu S, Zhang C, Liu D, Wu J, Tian H, Lu L, Xu GT, Liu F, Zhang J. Metformin protects ARPE-19 cells from glyoxal-induced oxidative stress. Oxid Med Cell Longev 2020;2020:1740943.
    11 Alomar SY, M Barakat B, Eldosoky M, Atef H, Mohamed AS, Elhawary R, El-Shafey M, Youssef AM, Elkazaz AY, Gabr AM, Elaskary AA, Salih MAK, Alolayan SO, Zaitone SA. Protective effect of metformin on rat diabetic retinopathy involves suppression of toll-like receptor 4/nuclear factor-k B expression and glutamate excitotoxicity. Int Immunopharmacol 2021;90:107193.
    12 Liu D, Wu Q, Zhu Y, Liu Y, Xie X, Li S, Lin H, Chen W, Zhu F. Co-delivery of metformin and levofloxacin hydrochloride using biodegradable thermosensitive hydrogel for the treatment of corneal neovascularization. Drug Deliv 2019;26(1):522-531.
    13 Li XR, Leng Y, Jiang QZ, Wang ZW, Luo P, Zhang C, Chen L, Wang YW, Wang HL, Yue XF, Shen CX, Zhou Y, Shi CM, Xie L. Eye drops of metformin prevents fibrosis after glaucoma filtration surgery in rats via activating AMPK/Nrf2 signaling pathway. Front Pharmacol 2020;11:1038.
    14 Fan YP, Wu CT, Lin JL, Hsiung CA, Liu HY, Lai JN, Yang CC. Metformin treatment is associated with a decreased risk of nonproliferative diabetic retinopathy in patients with type 2 diabetes mellitus: a population-based cohort study. J Diabetes Res 2020;2020:9161039.
    15 Wang X, Qi YH. Application prospects of metformin in ophthalmology. Guoji Yanke Zazhi(Int Eye Sci) 2017;17(4):673-676.
    16 Brown EE, Ball JD, Chen Z, Khurshid GS, Prosperi M, Ash JD. The common antidiabetic drug metformin reduces odds of developing age-related macular degeneration. Invest Ophthalmol Vis Sci 2019;60(5):1470-1477.
    17 Chen YY, Shen YC, Lai YJ, Wang CY, Lin KH, Feng SC, Liang CY, Wei LC, Chou P. Association between metformin and a lower risk of age-related macular degeneration in patients with type 2 diabetes. J Ophthalmol 2019;2019:1649156.
    18 Blitzer AL, Ham SA, Colby KA, Skondra D. Association of metformin use with age-related macular degeneration: a case-control study. JAMA Ophthalmol 2021;139(3):302-309.
    19 Stewart JM, Lamy R, Wu F, Keenan JD. Relationship between oral metformin use and age-related macular degeneration. Ophthalmol Retina 2020;4(11):1118-1119.
    20 Wong WL, Su XY, Li X, Cheung CMG, Klein R, Cheng CY, Wong TY. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Heal 2014;2(2):e106-e116.
    21 Chen Y, Bedell M, Zhang K. Age-related macular degeneration: genetic and environmental factors of disease. Mol Interv 2010; 10(5):271-281.
    22 Gu XR, Neric NJ, Crabb JS, Crabb JW, Bhattacharya SK, Rayborn ME, Hollyfield JG, Bonilha VL. Age-related changes in the retinal pigment epithelium (RPE). PLoS One 2012;7(6):e38673.
    23 Gnanaguru G, Choi AR, Amarnani D, D’Amore PA. Oxidized lipoprotein uptake through the CD36 receptor activates the NLRP3 inflammasome in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 2016;57(11):4704-4712.
    24 Hoppe G, O’Neil J, Hoff HF, Sears J. Accumulation of oxidized lipid-protein complexes alters phagosome maturation in retinal pigment epithelium. Cell Mol Life Sci 2004;61(13):1664-1674.
    25 Brandstetter C, Patt J, Holz FG, Krohne TU. Inflammasome priming increases retinal pigment epithelial cell susceptibility to lipofuscin phototoxicity by changing the cell death mechanism from apoptosis to pyroptosis. J Photochem Photobiol B 2016;161:177-183.
    26 Shaw PX, Stiles T, Douglas C, Ho D, Fan W, Du HJ, Xiao X. Oxidative stress, innate immunity, and age-related macular degeneration. AIMS Mol Sci 2016;3(2):196-221.
    27 Hernández-Zimbrón LF, Zamora-Alvarado R, Ochoa-De la Paz L, Velez-Montoya R, Zenteno E, Gulias-Cañizo R, Quiroz-Mercado H, Gonzalez-Salinas R. Age-related macular degeneration: new paradigms for treatment and management of AMD. Oxidative Med Cell Longev 2018;2018:8374647.
    28 Age-Related Eye Disease Study Research Group. A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E and beta carotene for age-related cataract and vision loss: AREDS report no. 9. Arch Ophthalmol 2001;119(10):1439-1452.
    29 Jemni-Damer N, Guedan-Duran A, Fuentes-Andion M, Serrano-Bengoechea N, Alfageme-Lopez N, Armada-Maresca F, Guinea GV, Perez-Rigueiro J, Rojo F, Gonzalez-Nieto D, Kaplan DL, Panetsos F. Biotechnology and biomaterial-based therapeutic strategies for age-related macular degeneration. part II: cell and tissue engineering therapies. Front Bioeng Biotechnol 2020;8:588014.
    30 Martín-Rodríguez S, de Pablos-Velasco P, Calbet JAL. Mitochondrial complex I inhibition by metformin: drug-exercise interactions. Trends Endocrinol Metab 2020;31(4):269-271.
    31 Stein BD, Calzolari D, Hellberg K, Hu YS, He L, Hung CM, Toyama EQ, Ross DS, Lillemeier BF, Cantley LC, Yates JR, Shaw RJ. Quantitative in vivo proteomics of metformin response in liver reveals AMPK-dependent and-independent signaling networks. Cell Rep 2019;29(10):3331-3348.e7.
    32 Schulman IG. Liver X receptors link lipid metabolism and inflammation. FEBS Lett 2017;591(19):2978-2991.
    33 Zelcer N, Hong C, Boyadjian R, Tontonoz P. LXR regulates cholesterol uptake through Idol-dependent ubiquitination of the LDL receptor. Science 2009;325(5936):100-104.
    34 Sáenz J, Alba G, Reyes-Quiroz ME, Geniz I, Jiménez J, Sobrino F, Santa-María C. Curcumin enhances LXRα in an AMP-activated protein kinase-dependent manner in human macrophages. J Nutr Biochem 2018;54:48-56.
    35 He X, Chen X, Wang L, Wang W, Liang Q, Yi L, Wang Y, Gao Q. Metformin ameliorates Ox-LDL-induced foam cell formation in raw264.7 cells by promoting ABCG-1 mediated cholesterol efflux. Life Sci 2019;216:67-74.
    36 Abdul NS, Chuturgoon AA. Fumonisin B1 regulates LDL receptor and ABCA1 expression in an LXR dependent mechanism in liver (HepG2) cells. Toxicon 2021;190:58-64.
    37 Wang D, Hiebl V, Schachner D, Ladurner A, Heiss EH, Atanasov AG, Dirsch VM. Soraphen A enhances macrophage cholesterol efflux via indirect LXR activation and ABCA1 upregulation. Biochem Pharmacol 2020;177:114022.
    38 Bu?dak ?, Machnik G, Bu?dak RJ, ?abuzek K, Bo?dys A, Okopień B. Exenatide and metformin express their anti-inflammatory effects on human monocytes/macrophages by the attenuation of MAPKs and NFκB signaling. Naunyn Schmiedebergs Arch Pharmacol 2016;389(10):1103-1115.
    39 Bai B, Chen HB. Metformin: a novel weapon against inflammation. Front Pharmacol 2021;12:622262.
    40 Kelly B, Tannahill GM, Murphy MP, O'Neill LAJ. Metformin inhibits the production of reactive oxygen species from NADH: ubiquinone oxidoreductase to limit induction of interleukin-1β (IL-1β) and boosts interleukin-10 (IL-10) in lipopolysaccharide (LPS)-activated macrophages. J Biol Chem 2015;290(33):20348-20359.
    41 Hattori Y, Suzuki K, Hattori S, Kasai K. Metformin inhibits cytokine-induced nuclear factor κB activation via AMP-activated protein kinase activation in vascular endothelial cells. Hypertension 2006;47(6): 1183-1188.
    42 Jansen T, Kvandová M, Daiber A, Stamm P, Frenis K, Schulz E, Münzel T, Kröller-Schön S. The AMP-activated protein kinase plays a role in antioxidant defense and regulation of vascular inflammation. Antioxidants 2020;9(6):525.
    43 Skrha J, Prázny M, Hilgertová J, Kvasnicka J, Kalousová M, Zima T. Oxidative stress and endothelium influenced by metformin in type 2 diabetes mellitus. Eur J Clin Pharmacol 2007;63(12):1107-1114.
    44 Cahova M, Palenickova E, Dankova H, Sticova E, Burian M, Drahota Z, Cervinkova Z, Kucera O, Gladkova C, Stopka P, Krizova J, Papackova Z, Oliyarnyk O, Kazdova L. Metformin prevents ischemia reperfusion-induced oxidative stress in the fatty liver by attenuation of reactive oxygen species formation. Am J Physiol Gastrointest Liver Physiol 2015;309(2):G100-G111.
    45 Jing YY, Wu F, Li D, Yang L, Li Q, Li R. Metformin improves obesity-associated inflammation by altering macrophages polarization. Mol Cell Endocrinol 2018;461:256-264.
    46 Kalariya NM, Shoeb M, Ansari NH, Srivastava SK, Ramana KV. Antidiabetic drug metformin suppresses endotoxin-induced uveitis in rats. Invest Ophthalmol Vis Sci 2012;53(7):3431-3440.
    47 Kamoshita M, Fujinami K, Toda E, Tsubota K, Ozawa Y. Neuroprotective effect of activated 5’-adenosine monophosphate-activated protein kinase on cone system function during retinal inflammation. BMC Neurosci 2016;17(1):32.
    48 Pan K, Abukhousa IMO, Wang YD. Research progress of a new type of programmed cell death-pyroptosis. Progress in Modern Biomedicine 2019;19(9):1793-1796.
    49 Zhang L, Lu L, Zhong X, Yue Y, Hong Y, Li Y, Li Y. Metformin reduced NLRP3 inflammasome activity in Ox-LDL stimulated macrophages through adenosine monophosphate activated protein kinase and protein phosphatase 2A. Eur J Pharmacol 2019;852:99-106.
    50 Chen B, Li J, Zhu H. AMP-activated protein kinase attenuates oxLDL uptake in macrophages through PP2A/NF-κB/LOX-1 pathway. Vascul Pharmacol 2016;85:1-10.
    51 Huangfu N, Wang Y, Cheng J, Xu Z, Wang S. Metformin protects against oxidized low density lipoprotein-induced macrophage apoptosis and inhibits lipid uptake. Exp Ther Med 2018;15(3):2485-2491.
    52 Wang L, Shi W, Gao X, SreeHarsha N, Zhang D. Cardioprotective role of metformin against sodium arsenite-induced oxidative stress, inflammation, and apoptosis. IUBMB Life 2020;72(4):749-757.
    53 Detaille D, Guigas B, Chauvin C, Batandier C, Fontaine E, Wiernsperger N, Leverve X. Metformin prevents high-glucose-induced endothelial cell death through a mitochondrial permeability transition-dependent process. Diabetes 2005;54(7):2179-2187.
    54 Rotermund C, Machetanz G, Fitzgerald JC. The therapeutic potential of metformin in neurodegenerative diseases. Front Endocrinol 2018;9:400.
    55 Harun-Or-Rashid M, Inman DM. Reduced AMPK activation and increased HCAR activation drive anti-inflammatory response and neuroprotection in glaucoma. J Neuroinflammation 2018;15(1):313.
    56 Li S, Gaur U, Chong CM, Lin SF, Fang JK, Zeng ZW, Wang HT, Zheng WH. Berberine protects human retinal pigment epithelial cells from hydrogen peroxide-induced oxidative damage through activation of AMPK. Int J Mol Sci 2018;19(6):1736.
    57 Li XF, Liu XM, Huang DR, Cao HJ, Wang JY. PF-06409577 activates AMPK signaling to protect retinal pigment epithelium cells from UV radiation. Biochem Biophys Res Commun 2018;501(1):293-299.
    58 Kaarniranta K, Kajdanek J, Morawiec J, Pawlowska E, Blasiak J. PGC-1α protects RPE cells of the aging retina against oxidative stress-induced degeneration through the regulation of senescence and mitochondrial quality control. the significance for AMD pathogenesis. Int J Mol Sci 2018;19(8):2317.
    59 Kumar A, Giri S, Kumar A. 5-Aminoimidazole-4-carboxamide ribonucleoside-mediated adenosine monophosphate-activated protein kinase activation induces protective innate responses in bacterial endophthalmitis. Cell Microbiol 2016;18(12):1815-1830.
    60 Kawashima H, Ozawa Y, Toda E, Homma K, Osada H, Narimatsu T, Nagai N, Tsubota K. Neuroprotective and vision-protective effect of preserving ATP levels by AMPK activator. FASEB J 2020;34(4): 5016-5026.
    61 Zhu X, Wang K, Zhou F, Zhu L. Paeoniflorin attenuates atRAL-induced oxidative stress, mitochondrial dysfunction and endoplasmic reticulum stress in retinal pigment epithelial cells via triggering Ca2+/CaMKII-dependent activation of AMPK. Arch Pharm Res 2018;41(10):1009-1018.
    62 Kim SH, Park JW. Morin hydrate attenuates CSE-induced lipid accumulation, ER stress, and oxidative stress in RPE cells: implications for age-related macular degeneration. Free Radic Res 2019;53(8):865-874.
    63 Khallaghi B, Safarian F, Nasoohi S, Ahmadiani A, Dargahi L. Metformin-induced protection against oxidative stress is associated with AKT/mTOR restoration in PC12 cells. Life Sci 2016;148:286-292.
    64 Chung EJ, Efstathiou NE, Konstantinou EK, Maidana DE, Miller JW, Young LH, Vavvas DG. AICAR suppresses TNF-α-induced complement factor B in RPE cells. Sci Rep 2017;7(1):17651.
    65 Athanasiou D, Aguila M, Opefi CA, South K, Bellingham J, Bevilacqua D, Munro PM, Kanuga N, Mackenzie FE, Dubis AM, Georgiadis A, Graca AB, Pearson RA, Ali RR, Sakami S, Palczewski K, Sherman MY, Reeves PJ, Cheetham ME. Rescue of mutant rhodopsin traffic by metformin-induced AMPK activation accelerates photoreceptor degeneration. Hum Mol Genet 2017;26(2):305-319.
    66 Hyttinen JM, Petrovski G, Salminen A, Kaarniranta K. 5’-Adenosine monophosphate-activated protein kinase—mammalian target of rapamycin axis as therapeutic target for age-related macular degeneration. Rejuvenation Res 2011;14(6):651-660.
    67 Zhang ZY, Bao XL, Cong YY, Fan B, Li GY. Autophagy in age-related macular degeneration: a regulatory mechanism of oxidative stress. Oxidative Med Cell Longev 2020;2020:2896036.
    68 Mohr T, Haudek-Prinz V, Slany A, Grillari J, Micksche M, Gerner C. Proteome profiling in IL-1β and VEGF-Activated human umbilical vein endothelial cells delineates the interlink between inflammation and angiogenesis. PLoS One 2017;12(6):e0179065.
    69 Kim GY, Lee JW, Ryu HC, Wei JD, Seong CM, Kim JH. Proinflammatory cytokine IL-1beta stimulates IL-8 synthesis in mast cells via a leukotriene B4 receptor 2-linked pathway, contributing to angiogenesis. J Immunol 2010;184(7):3946-3954.
    70 Argaw AT, Zhang YT, Snyder BJ, Zhao ML, Kopp N, Lee SC, Raine CS, Brosnan CF, John GR. IL-1beta regulates blood-brain barrier permeability via reactivation of the hypoxia-angiogenesis program. J Immunol 2006;177(8):5574-5584.
    71 Lavalette S, Raoul W, Houssier M, Camelo S, Levy O, Calippe B, Jonet L, Behar-Cohen F, Chemtob S, Guillonneau X, Combadière C, Sennlaub F. Interleukin-1β inhibition prevents choroidal neovascularization and does not exacerbate photoreceptor degeneration. Am J Pathol 2011;178(5):2416-2423.
    72 Li AH, Dubey S, Varney ML, Dave BJ, Singh RK. IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. J Immunol 2003;170(6):3369-3376.
    73 Wu T, Xu WQ, Wang YF, Tao MZ, Hu ZC, Lv B, Hui YN, Du HJ. OxLDL enhances choroidal neovascularization lesion through inducing vascular endothelium to mesenchymal transition process and angiogenic factor expression. Cell Signal 2020;70:109571.
    74 Dandapat A, Hu CP, Sun LQ, Mehta JL. Small concentrations of oxLDL induce capillary tube formation from endothelial cells via LOX-1-dependent redox-sensitive pathway. Arterioscler Thromb Vasc Biol 2007;27(11):2435-2442.
    75 Bharath LP, Nikolajczyk BS. The intersection of metformin and inflammation. Am J Physiol Cell Physiol 2021;320(5):C873-C879.
    76 Esfahanian N, Shakiba Y, Nikbin B, Soraya H, Maleki-Dizaji N, Ghazi-Khansari M, Garjani A. Effect of metformin on the proliferation, migration, and MMP-2 and -9 expression of human umbilical vein endothelial cells. Mol Med Rep 2012;5(4):1068-1074.
    77 Li WD, Li NP, Song DD, Rong JJ, Qian AM, Li XQ. Metformin inhibits endothelial progenitor cell migration by decreasing matrix metalloproteinases, MMP-2 and MMP-9, via the AMPK/mTOR/autophagy pathway. Int J Mol Med 2017;39(5):1262-1268.
    78 Han J, Li Y, Liu X, Zhou T, Sun H, Edwards P, Gao H, Yu FS, Qiao X. Metformin suppresses retinal angiogenesis and inflammation in vitro and in vivo. PLoS One 2018;13(3):e0193031.
    79 Noghero A, Perino A, Seano G, Saglio E, Lo Sasso G, Veglio F, Primo L, Hirsch E, Bussolino F, Morello F. Liver X receptor activation reduces angiogenesis by impairing lipid raft localization and signaling of vascular endothelial growth factor receptor-2. Arterioscler Thromb Vasc Biol 2012;32(9):2280-2288.
    80 Yi QY, Deng G, Chen N, Bai ZS, Yuan JS, Wu GH, Wang YW, Wu SJ. Metformin inhibits development of diabetic retinopathy through inducing alternative splicing of VEGF-A. Am J Transl Res 2016;8(9):3947-3954.
    81 Ersoy C, Kiyici S, Budak F, Oral B, Guclu M, Duran C, Selimoglu H, Erturk E, Tuncel E, Imamoglu S. The effect of metformin treatment on VEGF and PAI-1 levels in obese type 2 diabetic patients. Diabetes Res Clin Pract 2008;81(1):56-60.
    Cited by
Get Citation

Kuan-Rong Dang, Tong Wu, Yan-Nian Hui,/et al.Newly-found functions of metformin for the prevention and treatment of age-related macular degeneration. Int J Ophthalmol, 2021,14(8):1274-1280

Copy
Share
Article Metrics
  • Abstract:1276
  • PDF: 972
  • HTML: 0
  • Cited by: 0
Publication History
  • Received:August 13,2020
  • Revised:May 11,2021
  • Online: June 28,2021