人晶状体蛋白的质谱分析
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

中国辽宁省沈阳市科学技术计划基金资助项目(No.1091172-1-05)~~


Mass spectrometric analysis of proteins in human lens
Author:
Affiliation:

Fund Project:

Shenyang Municipal Science and Technology Planned Project, Liaoning Province, China(No. 1091172-1-05)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的:应用质谱法检测人晶状体蛋白质组成。方法:完整晶状体预分离后再通过1D SDS-PAGE凝胶分离晶状体蛋白质,依照考马斯亮蓝染色后的结果分成条带后进行胶内酶解,酶解后的肽段通过反相液相色谱再次分离,用线性离子阱串联质谱仪(LTQ)对洗脱出的肽段进行分析。运用生物信息学方法分析鉴定出的蛋白质。结果:共鉴定出人晶状体蛋白质574种,许多未知蛋白和蛋白亚型被鉴定出,相似于某种蛋白有38种,不确定蛋白有56种,没有特征的蛋白有27种,已知分子质量但不知功能蛋白有42种。通过生物信息学分析实验鉴定出的晶状体蛋白质数据,获得晶状体蛋白质一些重要代谢过程的结果。结论:提供大量未知人晶状体蛋白质数据及其代谢过程。

    Abstract:

    AIM:To detect the protein compositions in human lens by mass spectrography. METHODS:Prefractionation of complete lens proteins were carried out for reduction of complexity of samples. Then the proteins were separated by one-dimensional sodium dodecyl sulfate polyacrylamide gel(1D SDSPAGE), the gels were divided into slices in accordance with Coomassie brilliant blue staining,after digestion in the gel with trypsin,coupled with reversed phase high-performance liquid chromatography(RP-HPLC) separation and linear ion trap tandem mass spectrometry(LTQ) for analysis of eluted peptides.Bioinformatics tools were used for metabolic process analyses of identified proteins. RESULTS:A total of 574 lens proteins were identified.A number of unknown lens proteins and proteins isoforms were identified,including 38 proteins analogous to some proteins,56 uncertain proteins,27 uncharacterized proteins,42 proteins known molecular weight but unknown functions.Meaningful results about metabolic process analyses were obtained by bioinformatics analyses for identified proteins. CONCLUSION:This study provide abundant data analyses of many unknown proteins of human lens and their corresponding metabolic processes.

    参考文献
    相似文献
    引证文献
引用本文

姚志斌,曲勃,赵宇,等.人晶状体蛋白的质谱分析.国际眼科杂志, 2010,10(10):1888-1891.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码