[关键词]
[摘要]
青光眼是以病理性眼压升高、视神经萎缩和视野缺损为共同特征的眼病,可能导致不可逆的视力丧失。近年来,人工智能(AI)技术的迅速发展为青光眼的早期诊断和管理提供了新的手段。通过对青光眼相关影像进行分类和标注,AI模型能够学习并识别青光眼特有的病理特征,从而实现影像的自动化分析与诊断。青光眼影像分类和标注的研究主要涉及彩色眼底照相(CFP)、光学相干断层扫描(OCT)、眼前节光学相干断层扫描(AS-OCT)以及超声生物显微镜(UBM)等。彩色眼底照相主要用于视杯与视盘的标注,OCT用于视神经纤维层的厚度测量与标注,AS-OCT和UBM则聚焦于前房角结构的标注与眼前节结构参数的测量。为了规范青光眼影像分类和标注,提升标注数据的质量和一致性,推动智能眼科的临床应用,特制定本指南。本指南系统阐述了青光眼影像分类和标注的原则、方法、流程及质量控制要求,为青光眼影像的分类和标注提供标准化指导。
[Key word]
[Abstract]
Glaucoma is an eye disease characterized by pathologically elevated intraocular pressure, optic nerve atrophy, and visual field defects, which can lead to irreversible vision loss. In recent years, the rapid development of artificial intelligence(AI)technology has provided new approaches for the early diagnosis and management of glaucoma. By classifying and annotating glaucoma-related images, AI models can learn and recognize the specific pathological features of glaucoma, thereby achieving automated image analysis and classification. Research on glaucoma imaging classification and annotation mainly involves color fundus photography(CFP), optical coherence tomography(OCT), anterior segment optical coherence tomography(AS-OCT), and ultrasound biomicroscopy(UBM)images. Color fundus photography is primarily used for the annotation of the optic cup and disc, OCT is used for measuring and annotating of the thickness of the retinal nerve fiber layer, and AS-OCT and UBM focus on the annotation of the anterior chamber angle structure and the measurement of anterior segment structural parameters. To standardize the classification and annotation of glaucoma images, enhance the quality and consistency of annotated data, and promote the clinical application of intelligent ophthalmology, this guideline has been developed. This guideline systematically elaborates on the principles, methods, processes, and quality control requirements for the classification and annotation of glaucoma images, providing standardized guidance for the classification andannotation of glaucoma images.
[中图分类号]
[基金项目]
深圳市医疗卫生三名工程项目(No.SZSM202311012)