Abstract:AIM: To study the protective effect of astragalus-containing serum on cobalt chloride(CoCl2)-induced hypoxia injury of human retinal pigment epithelial cells(ARPE-19), so as to explore whether astragalus can improve diabetic retinopathy(DR)by anti-oxidative stress.
METHODS: The ARPE-19 hypoxia model induced by CoCl2 was established and divided into the following 5 groups: normal group(cells were cultured normally without any treatment), hypoxia model group(200μmol/L CoCl2), blank serum group(200μmol/L CoCl2+blank serum), low-dose drug-containing serum group(200μmol/L CoCl2+10% medicated serum)and high-dose drug-containing serum group(200μmol/L CoCl2+20% medicated serum); CCK-8 detects cell viability; Detect the levels of reduced glutathione(GSH)and malondialdehyde(MDA)in the cell supernatant with a kit; ELISA was used to detect the content of hypoxia-inducible factor-1α(HIF-1α)and vascular endothelial growth factor(VEGF)in cell culture medium; Real-time quantitative PCR(qPCR)to detect the mRNA levels of VEGF, HIF-1α and Prolyl hydroxylase-2(PHD-2); The expressions of VEGF, HIF-1α and PHD-2 were detected by Western Blot.
RESULTS: Hypoxia model of ARPE-19 can successfully establish by CoCl2 at 200μmol/L. Low-dose and high-dose astragalus-containing serum could inhibit hypoxia-induced ARPE-19 proliferation(P<0.05), increase the GSH level and reduce the MDA content in ARPE-19 with hypoxic injury(P<0.05). Low-dose and high-dose astragalus-containing serum could inhibit the expression of HIF-1α and VEGF in ARPE-19 hypoxic injury supernatant(P<0.05), as well as the mRNA and protein expressions of VEGF, HIF-1α and PHD-2 in ARPE-19(P<0.05).
CONCLUSION: Low-dose and high-dose astragalus-containing serum alleviates the hypoxia injury of ARPE-19 induced by CoCl2 through anti-oxidant effect.