基于深度学习的睑板腺腺体分割方法研究
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

福建省自然科学基金项目(No.2020J011084)


Segmentation of meibomian glands based on deep learning
Author:
Affiliation:

Fund Project:

Natural Science Foundation of Fujian Province(No.2020J011084)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的:探讨应用深度学习技术解决睑板腺腺体自动分割问题的效果与价值。

    方法:采集并筛选出193幅红外睑板腺图像构建图像数据库,由3名临床医师对图像进行人工标记; 引入UNet++网络与自动数据增广策略构建睑板腺腺体自动分割模型,采用精确率、敏感性、特异性、准确率和交并比分析该模型的可行性与有效性。

    结果:以人工标注结果为金标准,基于UNet++的睑板腺腺体自动分割模型取得94.31%的准确率,敏感性、特异性分别为82.15%和96.13%,腺体分割表现具有较好的稳定性,模型处理单张图像的平均用时仅为0.11s。

    结论:引入深度学习技术实现睑板腺腺体的自动分割,具有良好的准确性、稳定性和高效性,可服务于睑板腺功能障碍患者腺体形态参数的计算,辅助相关疾病的临床诊断和筛查,提高诊断效率。

    Abstract:

    AIM: To explore the application value of deep learning technology in automatic meibomian glands segmentation.

    METHODS:Infrared meibomian gland images were collected and 193 of them were picked out for establishing the database. The images were manually labeled by three clinicians. UNet++ network and automatic data expansion strategy were introduced to construct the automatic meibomian glands segmentation model. The feasibility and effectiveness of the proposed segmentation model were analyzed by precision, sensitivity, specificity, accuracy and intersection over union.

    RESULTS: Taking manual labeling as the gold standard, the presented method segment the glands effectively and steadily with accuracy, sensitivity and specificity of 94.31%, 82.15% and 96.13% respectively. On the average, only 0.11s was taken for glands segmentation of single image.

    CONCLUSIONS: In this paper, deep learning technology is introduced to realize automatic segmentation of meibomian glands, achieving high accuracy, good stability and efficiency. It would be quite useful for calculation of gland morphological parameters, the clinical diagnosis and screening of related diseases, improving the diagnostic efficiency.

    参考文献
    相似文献
    引证文献
引用本文

林嘉雯,林智明,赖泰辰,等.基于深度学习的睑板腺腺体分割方法研究.国际眼科杂志, 2022,22(7):1191-1194.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-01-06
  • 最后修改日期:2022-06-13
  • 录用日期:
  • 在线发布日期: 2022-06-28
  • 出版日期:
文章二维码